IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3302-d185635.html
   My bibliography  Save this article

Adaptive Partial Train Speed Trajectory Optimization

Author

Listed:
  • Zhaoxiang Tan

    (Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China)

  • Shaofeng Lu

    (Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China)

  • Kai Bao

    (Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China)

  • Shaoning Zhang

    (Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
    Department of Electrical Engineering and Electronics, The University of Liverpool, Liverpool L69 3BX, UK)

  • Chaoxian Wu

    (Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
    Department of Electrical Engineering and Electronics, The University of Liverpool, Liverpool L69 3BX, UK)

  • Jie Yang

    (School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China)

  • Fei Xue

    (Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China)

Abstract

Train speed trajectory optimization has been proposed as an efficient and feasible method for energy-efficient train operation without many further requirements to upgrade the current railway system. This paper focuses on an adaptive partial train speed trajectory optimization problem between two arbitrary speed points with a given traveling time and distance, in comparison with full speed trajectory with zero initial and end speeds between two stations. This optimization problem is of interest in dynamic applications where scenarios keep changing due to signaling and multi-train interactions. We present a detailed optimality analysis based on Pontryagin’s maximum principle (PMP) which is later used to design the optimization methods. We propose two optimization methods, one based on the PMP and another based on mixed-integer linear programming (MILP), to solve the problem. Both methods are designed using heuristics obtained from the developed optimality analysis based on the PMP. We develop an intuitive numerical algorithm to achieve the optimal speed trajectory in four typical case scenarios; meanwhile, we propose a new distance-based MILP approach to optimize the partial speed trajectory in the same scenarios with high modeling precision and computation efficiency. The MILP method is later used in a real engineering speed trajectory optimization to demonstrate its high computational efficiency, robustness, and adaptivity. This paper concludes with a comparison of both methods in addition to the widely applied pseudospectral method and propose the future work of this paper.

Suggested Citation

  • Zhaoxiang Tan & Shaofeng Lu & Kai Bao & Shaoning Zhang & Chaoxian Wu & Jie Yang & Fei Xue, 2018. "Adaptive Partial Train Speed Trajectory Optimization," Energies, MDPI, vol. 11(12), pages 1-33, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3302-:d:185635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3302/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3302/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2016. "A stochastic model for the integrated optimization on metro timetable and speed profile with uncertain train mass," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 424-445.
    2. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 509-538.
    3. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 482-508.
    4. Scheepmaker, Gerben M. & Goverde, Rob M.P. & Kroon, Leo G., 2017. "Review of energy-efficient train control and timetabling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 355-376.
    5. Phil Howlett, 2000. "The Optimal Control of a Train," Annals of Operations Research, Springer, vol. 98(1), pages 65-87, December.
    6. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
    7. Yin, Jiateng & Tang, Tao & Yang, Lixing & Gao, Ziyou & Ran, Bin, 2016. "Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 178-210.
    8. Liu, Rongfang (Rachel) & Golovitcher, Iakov M., 2003. "Energy-efficient operation of rail vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 917-932, December.
    9. Li, Xiang & Lo, Hong K., 2014. "An energy-efficient scheduling and speed control approach for metro rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 73-89.
    10. Li, Xiang & Lo, Hong K., 2014. "Energy minimization in dynamic train scheduling and control for metro rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 269-284.
    11. Haahr, Jørgen Thorlund & Pisinger, David & Sabbaghian, Mohammad, 2017. "A dynamic programming approach for optimizing train speed profiles with speed restrictions and passage points," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 167-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longda Wang & Xingcheng Wang & Zhao Sheng & Senkui Lu, 2020. "Multi-Objective Shark Smell Optimization Algorithm Using Incorporated Composite Angle Cosine for Automatic Train Operation," Energies, MDPI, vol. 13(3), pages 1-25, February.
    2. Xiaowen Wang & Zhuang Xiao & Mo Chen & Pengfei Sun & Qingyuan Wang & Xiaoyun Feng, 2020. "Energy-Efficient Speed Profile Optimization and Sliding Mode Speed Tracking for Metros," Energies, MDPI, vol. 13(22), pages 1-29, November.
    3. Szymon Haładyn, 2021. "The Problem of Train Scheduling in the Context of the Load on the Power Supply Infrastructure. A Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canca, David & Zarzo, Alejandro, 2017. "Design of energy-Efficient timetables in two-way railway rapid transit lines," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 142-161.
    2. Wang, Pengling & Goverde, Rob M.P., 2019. "Multi-train trajectory optimization for energy-efficient timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 621-635.
    3. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 2: Extensions towards energy-efficient train operations," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 72-94.
    4. Wang, Xuekai & Tang, Tao & Su, Shuai & Yin, Jiateng & Gao, Ziyou & Lv, Nan, 2021. "An integrated energy-efficient train operation approach based on the space-time-speed network methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    5. Lian, Deheng & Mo, Pengli & D’Ariano, Andrea & Gao, Ziyou & Yang, Lixing, 2024. "Energy-saving time allocation strategy with uncertain dwell times in urban rail transit: Two-stage stochastic model and nested dynamic programming framework," European Journal of Operational Research, Elsevier, vol. 317(1), pages 219-242.
    6. Ye, Hongbo & Liu, Ronghui, 2016. "A multiphase optimal control method for multi-train control and scheduling on railway lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 377-393.
    7. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2018. "The two-train separation problem on non-level track—driving strategies that minimize total required tractive energy subject to prescribed section clearance times," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 135-167.
    8. Ning, Jingjie & Zhou, Yonghua & Long, Fengchu & Tao, Xin, 2018. "A synergistic energy-efficient planning approach for urban rail transit operations," Energy, Elsevier, vol. 151(C), pages 854-863.
    9. Zhan, Shuguang & Wang, Pengling & Wong, S.C. & Lo, S.M., 2022. "Energy-efficient high-speed train rescheduling during a major disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    10. Luijt, Ralph S. & van den Berge, Maarten P.F. & Willeboordse, Helen Y. & Hoogenraad, Jan H., 2017. "5years of Dutch eco-driving: Managing behavioural change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 46-63.
    11. He, Deqiang & Yang, Yanjie & Chen, Yanjun & Deng, Jianxin & Shan, Sheng & Liu, Jianren & Li, Xianwang, 2020. "An integrated optimization model of metro energy consumption based on regenerative energy and passenger transfer," Applied Energy, Elsevier, vol. 264(C).
    12. Lai, Qingying & Liu, Jun & Haghani, Ali & Meng, Lingyun & Wang, Yihui, 2020. "Energy-efficient speed profile optimization for medium-speed maglev trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    13. Yang, Songpo & Liao, Feixiong & Wu, Jianjun & Timmermans, Harry J.P. & Sun, Huijun & Gao, Ziyou, 2020. "A bi-objective timetable optimization model incorporating energy allocation and passenger assignment in an energy-regenerative metro system," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 85-113.
    14. Huanhuan Lv & Yuzhao Zhang & Kang Huang & Xiaotong Yu & Jianjun Wu, 2019. "An Energy-Efficient Timetable Optimization Approach in a Bi-DirectionUrban Rail Transit Line: A Mixed-Integer Linear Programming Model," Energies, MDPI, vol. 12(14), pages 1-24, July.
    15. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 482-508.
    16. Andreas Bärmann & Alexander Martin & Oskar Schneider, 2021. "Efficient Formulations and Decomposition Approaches for Power Peak Reduction in Railway Traffic via Timetabling," Transportation Science, INFORMS, vol. 55(3), pages 747-767, May.
    17. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    18. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
    19. Gupta, Shuvomoy Das & Tobin, J. Kevin & Pavel, Lacra, 2016. "A two-step linear programming model for energy-efficient timetables in metro railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 57-74.
    20. Jie Yang & Limin Jia & Shaofeng Lu & Yunxiao Fu & Ji Ge, 2016. "Energy-Efficient Speed Profile Approximation: An Optimal Switching Region-Based Approach with Adaptive Resolution," Energies, MDPI, vol. 9(10), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3302-:d:185635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.