IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2355-d1084476.html
   My bibliography  Save this article

A Survey on Key Management and Authentication Approaches in Smart Metering Systems

Author

Listed:
  • Mohamed S. Abdalzaher

    (Department of Seismology, National Research Institute of Astronomy and Geophysics, Cairo 11421, Egypt)

  • Mostafa M. Fouda

    (Department of Electrical and Computer Engineering, College of Science and Engineering, Idaho State University, Pocatello, ID 83209, USA)

  • Ahmed Emran

    (Department of Electrical Engineering, Al-Azhar University, Cairo 11651, Egypt)

  • Zubair Md Fadlullah

    (Department of Computer Science, Western University, London, ON N6A 5B7, Canada)

  • Mohamed I. Ibrahem

    (Department of Cyber Security Engineering, George Mason University, Fairfax, VA 22030, USA
    Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt)

Abstract

The implementation of the smart grid (SG) and cyber-physical systems (CPS) greatly enhances the safety, reliability, and efficiency of energy production and distribution. Smart grids rely on smart meters (SMs) in converting the power grids (PGs) in a smart and reliable way. However, the proper operation of these systems needs to protect them against attack attempts and unauthorized entities. In this regard, key-management and authentication mechanisms can play a significant role. In this paper, we shed light on the importance of these mechanisms, clarifying the main efforts presented in the context of the literature. First, we address the main intelligent attacks affecting the SGs. Secondly, the main terms of cryptography are addressed. Thirdly, we summarize the common proposed key-management techniques with a suitable critique showing their pros and cons. Fourth, we introduce the effective paradigms of authentication in the state of the art. Fifth, the common two tools for verifying the security and integrity of protocols are presented. Sixth, the relevant research challenges are addressed to achieve trusted smart grids and protect their SMs against attack manipulations and unauthorized entities with a future vision. Accordingly, this survey can facilitate the efforts exerted by interested researchers in this regard.

Suggested Citation

  • Mohamed S. Abdalzaher & Mostafa M. Fouda & Ahmed Emran & Zubair Md Fadlullah & Mohamed I. Ibrahem, 2023. "A Survey on Key Management and Authentication Approaches in Smart Metering Systems," Energies, MDPI, vol. 16(5), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2355-:d:1084476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omar Hamdy & Hanan Gaber & Mohamed S. Abdalzaher & Mahmoud Elhadidy, 2022. "Identifying Exposure of Urban Area to Certain Seismic Hazard Using Machine Learning and GIS: A Case Study of Greater Cairo," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    2. Rosario Miceli, 2013. "Energy Management and Smart Grids," Energies, MDPI, vol. 6(4), pages 1-29, April.
    3. Denise Tellbach & Yan-Fu Li, 2018. "Cyber-Attacks on Smart Meters in Household Nanogrid: Modeling, Simulation and Analysis," Energies, MDPI, vol. 11(2), pages 1-19, February.
    4. Mohamed S. Abdalzaher & Hussein A. Elsayed & Mostafa M. Fouda & Mahmoud M. Salim, 2023. "Employing Machine Learning and IoT for Earthquake Early Warning System in Smart Cities," Energies, MDPI, vol. 16(1), pages 1-22, January.
    5. Imtiaz Parvez & Arif I. Sarwat & Longfei Wei & Aditya Sundararajan, 2016. "Securing Metering Infrastructure of Smart Grid: A Machine Learning and Localization Based Key Management Approach," Energies, MDPI, vol. 9(9), pages 1-18, August.
    6. Mohamed S. Abdalzaher & Mostafa M. Fouda & Mohamed I. Ibrahem, 2022. "Data Privacy Preservation and Security in Smart Metering Systems," Energies, MDPI, vol. 15(19), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Zhang & Hao Zhang & Jianqiao Ye & Jiaqing Wang & Qing Liu & Shenghu Li, 2023. "Eigen-Sensitivity-Based Sliding Mode Control for LFO Damping in DFIG-Integrated Power Systems," Energies, MDPI, vol. 16(10), pages 1-18, May.
    2. Mohamed S. Abdalzaher & Moez Krichen & Derya Yiltas-Kaplan & Imed Ben Dhaou & Wilfried Yves Hamilton Adoni, 2023. "Early Detection of Earthquakes Using IoT and Cloud Infrastructure: A Survey," Sustainability, MDPI, vol. 15(15), pages 1-38, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed S. Abdalzaher & Moez Krichen & Derya Yiltas-Kaplan & Imed Ben Dhaou & Wilfried Yves Hamilton Adoni, 2023. "Early Detection of Earthquakes Using IoT and Cloud Infrastructure: A Survey," Sustainability, MDPI, vol. 15(15), pages 1-38, July.
    2. Mohamed S. Abdalzaher & Mostafa M. Fouda & Mohamed I. Ibrahem, 2022. "Data Privacy Preservation and Security in Smart Metering Systems," Energies, MDPI, vol. 15(19), pages 1-19, October.
    3. Chankook Park & Wan Gyu Heo & Myung Eun Lee, 2024. "Study on Consumers’ Perceived Benefits and Risks of Smart Energy System," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 288-300, May.
    4. Mahmoud M. Badr & Mohamed I. Ibrahem & Hisham A. Kholidy & Mostafa M. Fouda & Muhammad Ismail, 2023. "Review of the Data-Driven Methods for Electricity Fraud Detection in Smart Metering Systems," Energies, MDPI, vol. 16(6), pages 1-18, March.
    5. Loßner, Martin & Böttger, Diana & Bruckner, Thomas, 2017. "Economic assessment of virtual power plants in the German energy market — A scenario-based and model-supported analysis," Energy Economics, Elsevier, vol. 62(C), pages 125-138.
    6. Mihai Sanduleac & Gianluca Lipari & Antonello Monti & Artemis Voulkidis & Gianluca Zanetto & Antonello Corsi & Lucian Toma & Giampaolo Fiorentino & Dumitru Federenciuc, 2017. "Next Generation Real-Time Smart Meters for ICT Based Assessment of Grid Data Inconsistencies," Energies, MDPI, vol. 10(7), pages 1-16, June.
    7. Joao C. Ferreira & Ana Lucia Martins, 2018. "Building a Community of Users for Open Market Energy," Energies, MDPI, vol. 11(9), pages 1-21, September.
    8. Tao Li & Jianqiang Luo & Kaitong Liang & Chaonan Yi & Lei Ma, 2023. "Synergy of Patent and Open-Source-Driven Sustainable Climate Governance under Green AI: A Case Study of TinyML," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    9. Houssem Rafik Al-Hana Bouchekara & Mohammad Shoaib Shahriar & Muhammad Sharjeel Javaid & Yusuf Abubakar Sha’aban & Makbul Anwari Muhammad Ramli, 2021. "Multi-Objective Optimization of a Hybrid Nanogrid/Microgrid: Application to Desert Camps in Hafr Al-Batin," Energies, MDPI, vol. 14(5), pages 1-24, February.
    10. Lefeng Cheng & Zhiyi Zhang & Haorong Jiang & Tao Yu & Wenrui Wang & Weifeng Xu & Jinxiu Hua, 2018. "Local Energy Management and Optimization: A Novel Energy Universal Service Bus System Based on Energy Internet Technologies," Energies, MDPI, vol. 11(5), pages 1-38, May.
    11. Andrzej Ożadowicz, 2017. "A New Concept of Active Demand Side Management for Energy Efficient Prosumer Microgrids with Smart Building Technologies," Energies, MDPI, vol. 10(11), pages 1-22, November.
    12. Mohamed S. Abdalzaher & Hussein A. Elsayed & Mostafa M. Fouda & Mahmoud M. Salim, 2023. "Employing Machine Learning and IoT for Earthquake Early Warning System in Smart Cities," Energies, MDPI, vol. 16(1), pages 1-22, January.
    13. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    14. Saad, Ahmed A. & Faddel, Samy & Mohammed, Osama, 2019. "A secured distributed control system for future interconnected smart grids," Applied Energy, Elsevier, vol. 243(C), pages 57-70.
    15. Mirosław Kornatka & Tomasz Popławski, 2021. "Advanced Metering Infrastructure—Towards a Reliable Network," Energies, MDPI, vol. 14(18), pages 1-12, September.
    16. Ahmed WA Hammad & Ali Akbarnezhad & Assed Haddad & Elaine Garrido Vazquez, 2019. "Sustainable Zoning, Land-Use Allocation and Facility Location Optimisation in Smart Cities," Energies, MDPI, vol. 12(7), pages 1-23, April.
    17. Aniela Kaminska & Andrzej Ożadowicz, 2018. "Lighting Control Including Daylight and Energy Efficiency Improvements Analysis," Energies, MDPI, vol. 11(8), pages 1-18, August.
    18. Damilola A. Asaleye & Michael Breen & Michael D. Murphy, 2017. "A Decision Support Tool for Building Integrated Renewable Energy Microgrids Connected to a Smart Grid," Energies, MDPI, vol. 10(11), pages 1-29, November.
    19. Rasheed Abdulkader & Hayder M. A. Ghanimi & Pankaj Dadheech & Meshal Alharbi & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly & Dhivya Swaminathan & Sudhakar Sengan, 2023. "Soft Computing in Smart Grid with Decentralized Generation and Renewable Energy Storage System Planning," Energies, MDPI, vol. 16(6), pages 1-24, March.
    20. Rui Zhang & Hao Zhang & Jianqiao Ye & Jiaqing Wang & Qing Liu & Shenghu Li, 2023. "Eigen-Sensitivity-Based Sliding Mode Control for LFO Damping in DFIG-Integrated Power Systems," Energies, MDPI, vol. 16(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2355-:d:1084476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.