IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i9p691-d76919.html
   My bibliography  Save this article

Securing Metering Infrastructure of Smart Grid: A Machine Learning and Localization Based Key Management Approach

Author

Listed:
  • Imtiaz Parvez

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

  • Arif I. Sarwat

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

  • Longfei Wei

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

  • Aditya Sundararajan

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

Abstract

In smart cities, advanced metering infrastructure (AMI) of the smart grid facilitates automated metering, control and monitoring of power distribution by employing a wireless network. Due to this wireless nature of communication, there exist potential threats to the data privacy in AMI. Decoding the energy consumption reading, injecting false data/command signals and jamming the networks are some hazardous measures against this technology. Since a smart meter possesses limited memory and computational capability, AMI demands a light, but robust security scheme. In this paper, we propose a localization-based key management system for meter data encryption. Data are encrypted by the key associated with the coordinate of the meter and a random key index. The encryption keys are managed and distributed by a trusted third party (TTP). Localization of the meter is proposed by a method based on received signal strength (RSS) using the maximum likelihood estimator (MLE). The received packets are decrypted at the control center with the key mapped with the key index and the meter’s coordinates. Additionally, we propose the k-nearest neighbors (kNN) algorithm for node/meter authentication, capitalizing further on data transmission security. Finally, we evaluate the security strength of a data packet numerically for our method.

Suggested Citation

  • Imtiaz Parvez & Arif I. Sarwat & Longfei Wei & Aditya Sundararajan, 2016. "Securing Metering Infrastructure of Smart Grid: A Machine Learning and Localization Based Key Management Approach," Energies, MDPI, vol. 9(9), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:691-:d:76919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/9/691/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/9/691/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed WA Hammad & Ali Akbarnezhad & Assed Haddad & Elaine Garrido Vazquez, 2019. "Sustainable Zoning, Land-Use Allocation and Facility Location Optimisation in Smart Cities," Energies, MDPI, vol. 12(7), pages 1-23, April.
    2. Mohamed S. Abdalzaher & Mostafa M. Fouda & Ahmed Emran & Zubair Md Fadlullah & Mohamed I. Ibrahem, 2023. "A Survey on Key Management and Authentication Approaches in Smart Metering Systems," Energies, MDPI, vol. 16(5), pages 1-27, March.
    3. Mirosław Kornatka & Tomasz Popławski, 2021. "Advanced Metering Infrastructure—Towards a Reliable Network," Energies, MDPI, vol. 14(18), pages 1-12, September.
    4. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    5. Mihai Sanduleac & Gianluca Lipari & Antonello Monti & Artemis Voulkidis & Gianluca Zanetto & Antonello Corsi & Lucian Toma & Giampaolo Fiorentino & Dumitru Federenciuc, 2017. "Next Generation Real-Time Smart Meters for ICT Based Assessment of Grid Data Inconsistencies," Energies, MDPI, vol. 10(7), pages 1-16, June.
    6. Ramesh Ananthavijayan & Prabhakar Karthikeyan Shanmugam & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Frede Blaabjerg & Viliam Fedak, 2019. "Software Architectures for Smart Grid System—A Bibliographical Survey," Energies, MDPI, vol. 12(6), pages 1-18, March.
    7. Mohamed S. Abdalzaher & Mostafa M. Fouda & Mohamed I. Ibrahem, 2022. "Data Privacy Preservation and Security in Smart Metering Systems," Energies, MDPI, vol. 15(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:691-:d:76919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.