IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2131-d1076896.html
   My bibliography  Save this article

A Novel Pressure-Controlled Molecular Dynamics Simulation Method for Nanoscale Boiling Heat Transfer

Author

Listed:
  • Cong Wang

    (Energy Research Institute, Qilu University of Technology, Jinan 250014, China)

  • Yalong Kong

    (Energy Research Institute, Qilu University of Technology, Jinan 250014, China)

  • Zhigang Liu

    (Energy Research Institute, Qilu University of Technology, Jinan 250014, China)

  • Lin Guo

    (Energy Research Institute, Qilu University of Technology, Jinan 250014, China)

  • Yawei Yang

    (Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Pool boiling, enabling remarkable phase-change heat transfer, has elicited increasing attention due to its ubiquitous applications in solar thermal power stations. An explicit understanding of the effect of system pressure on pool boiling is required to enhance the phase-change heat transfer. Despite its wide application when exploring the potential mechanism of boiling, the molecular dynamics method still needs to be improved when discussing the working mechanism of system pressure. Therefore, in the present study, a novel molecular dynamics simulation method of nanoscale pool boiling was proposed. This method provides a way to change and control pressure during the phase-change process. Furthermore, the bubble nucleation and growth in nanoscale pool boiling are quantitatively investigated through pressure-control molecular dynamics simulations. We expect that this study will improve the present simulation method of pool boiling and provide useful insights to the physics of the process.

Suggested Citation

  • Cong Wang & Yalong Kong & Zhigang Liu & Lin Guo & Yawei Yang, 2023. "A Novel Pressure-Controlled Molecular Dynamics Simulation Method for Nanoscale Boiling Heat Transfer," Energies, MDPI, vol. 16(5), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2131-:d:1076896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2131/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2131/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Remco Erp & Reza Soleimanzadeh & Luca Nela & Georgios Kampitsis & Elison Matioli, 2020. "Co-designing electronics with microfluidics for more sustainable cooling," Nature, Nature, vol. 585(7824), pages 211-216, September.
    2. Chandrakant R. Sonawane & Hitesh N. Panchal & Siamak Hoseinzadeh & Mohammad Hadi Ghasemi & Ali Jawad Alrubaie & Ali Sohani, 2022. "Bibliometric Analysis of Solar Desalination Systems Powered by Solar Energy and CFD Modelled," Energies, MDPI, vol. 15(14), pages 1-13, July.
    3. Khoshgoftar Manesh, Mohammad Hasan & Hajizadeh Aghdam, Meysam & Vazini Modabber, Hossein & Ghasemi, Amir & Khajeh Talkhoncheh, Mahdi, 2022. "Techno-economic, environmental and emergy analysis and optimization of integrated solar parabolic trough collector and multi effect distillation systems with a combined cycle power plant," Energy, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, H.R. & Li, B.J. & Hua, L.J. & Wang, R.Z., 2022. "Designing thermoelectric self-cooling system for electronic devices: Experimental investigation and model validation," Energy, Elsevier, vol. 243(C).
    2. Shuhuan Wei & Dini Wang, 2023. "Improvement of Constructal Optimization for “Volume-Point” Heat Conduction Based on Uniformity Principle of Temperature Difference Fields," Mathematics, MDPI, vol. 11(16), pages 1-14, August.
    3. Yunfeng Li & Zhihui Xie & Daoguang Lin & Zhuoqun Lu & Yanlin Ge, 2023. "Constructal Optimizations of Liquid-Cooled Channels with Triangle or Square Sections in a Cylindrical Heating Body," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
    4. Dalia Streimikiene & Grigorios L. Kyriakopoulos, 2023. "Energy Poverty and Low Carbon Energy Transition," Energies, MDPI, vol. 16(2), pages 1-15, January.
    5. Xiao, Lei & Luo, Kaiqi & Zhao, Dong & Wu, Zhanghua & Xu, Jingyuan & Luo, Ercang, 2024. "A highly efficient heat-driven thermoacoustic cooling system: Detailed study," Energy, Elsevier, vol. 293(C).
    6. Rui, Ziliang & Sun, Hong & Ma, Jie & Peng, Hao, 2023. "Experimental study and prediction on the thermal management performance of SDS aqueous solution based microchannel flow boiling system," Energy, Elsevier, vol. 282(C).
    7. Nan Wu & Mingmei Sun & Hong Guo & Zhongnan Xie & Shijie Du, 2023. "Enhancement Effect of a Diamond Network on the Flow Boiling Heat Transfer Characteristics of a Diamond/Cu Heat Sink," Energies, MDPI, vol. 16(21), pages 1-17, October.
    8. Xinyu Meng & Yijian He & Lijuan He & Chenlei Zhao & Lifang Wang & Wenxi You & Jingbo Zhu, 2024. "A Review of the Energy-Saving Potential of Phase Change Material-Based Cascaded Refrigeration Systems in Chinese Food Cold Chain Industry," Energies, MDPI, vol. 17(19), pages 1-28, September.
    9. Krzysztof Dziarski & Arkadiusz Hulewicz & Grzegorz Dombek & Łukasz Drużyński, 2022. "Indirect Thermographic Temperature Measurement of a Power-Rectifying Diode Die," Energies, MDPI, vol. 15(9), pages 1-17, April.
    10. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    11. Ariana M. Pietrasanta & Mostafa F. Shaaban & Pio A. Aguirre & Sergio F. Mussati & Mohamed A. Hamouda, 2023. "Simulation and Optimization of Renewable Energy-Powered Desalination: A Bibliometric Analysis and Highlights of Recent Research," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    12. Sagar Shelare & Ravinder Kumar & Trupti Gajbhiye & Sumit Kanchan, 2023. "Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges," Energies, MDPI, vol. 16(6), pages 1-22, March.
    13. Xu Wang & Pallav Purohit, 2022. "Transitioning to low-GWP alternatives with enhanced energy efficiency in cooling non-residential buildings of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-28, October.
    14. Haofan Mu & Weixiu Shi, 2024. "Review of Operation Performance and Application Status of Pulsating Heat Pipe," Sustainability, MDPI, vol. 16(7), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2131-:d:1076896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.