IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1951-d1070055.html
   My bibliography  Save this article

A Comprehensive Assessment of Two-Phase Flow Boiling Heat Transfer in Micro-Fin Tubes Using Pure and Blended Eco-Friendly Refrigerants

Author

Listed:
  • Neeraj Kumar Vidhyarthi

    (Department of Mechanical Engineering, National Institute of Technology Agartala, Jirania, Agartala 799046, Tripura, India)

  • Sandipan Deb

    (Department of Mechanical Engineering, National Institute of Technology Agartala, Jirania, Agartala 799046, Tripura, India)

  • Sameer Sheshrao Gajghate

    (Department of Mechanical Engineering, G H Raisoni College of Engineering and Management, Pune 412207, Maharashtra, India)

  • Sagnik Pal

    (Department of Mechanical Engineering, National Institute of Technology Agartala, Jirania, Agartala 799046, Tripura, India)

  • Dipak Chandra Das

    (Department of Mechanical Engineering, National Institute of Technology Agartala, Jirania, Agartala 799046, Tripura, India)

  • Ajoy Kumar Das

    (Department of Mechanical Engineering, National Institute of Technology Agartala, Jirania, Agartala 799046, Tripura, India)

  • Bidyut Baran Saha

    (International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0385, Japan
    Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan)

Abstract

This review study examines flow boiling heat transfer in micro-fin tubes using mixed and pure refrigerants with zero ozone-depleting potential (ODP) and minimal global warming potential (GWP). This investigation focuses on the extraordinary relationship between heat transfer coefficients (HTCs) and vapor quality. Since the introduction of micro-fin heat exchanger tubes over 30 years ago, refrigerant-based cooling has improved significantly. Air conditioning and refrigeration companies are replacing widely used refrigerants, with substantial global warming impacts. When space, weight, or efficiency are limited, micro-fin heat exchangers with improved dependability are preferred. This review article discusses flow boiling concepts. The researchers used several refrigerants under different testing conditions and with varying micro-fin tube parameters. Micro-fin tubes are promising for improved heat transfer techniques. This tube increases the heat transfer area, fluid disturbance, flow speed, and direction owing to centrifugal force and HTC. As the focus shifts to improving heat transfer, pressure drop, mean vapor quality, and practical devices, this subject will grow more intriguing. A radical shift will reduce equipment size for certain traditional heat transfer systems and bring new products using micro-scale technologies. This suggested review effort helps comprehend saturation flow boiling through micro-fin tubes and find the right correlation for a given application. This domain’s challenges and future relevance are also discussed.

Suggested Citation

  • Neeraj Kumar Vidhyarthi & Sandipan Deb & Sameer Sheshrao Gajghate & Sagnik Pal & Dipak Chandra Das & Ajoy Kumar Das & Bidyut Baran Saha, 2023. "A Comprehensive Assessment of Two-Phase Flow Boiling Heat Transfer in Micro-Fin Tubes Using Pure and Blended Eco-Friendly Refrigerants," Energies, MDPI, vol. 16(4), pages 1-32, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1951-:d:1070055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1951/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1951/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen A. Montzka & Geoff S. Dutton & Pengfei Yu & Eric Ray & Robert W. Portmann & John S. Daniel & Lambert Kuijpers & Brad D. Hall & Debra Mondeel & Carolina Siso & J. David Nance & Matt Rigby & Ali, 2018. "An unexpected and persistent increase in global emissions of ozone-depleting CFC-11," Nature, Nature, vol. 557(7705), pages 413-417, May.
    2. Sunyoung Park & Luke M. Western & Takuya Saito & Alison L. Redington & Stephan Henne & Xuekun Fang & Ronald G. Prinn & Alistair J. Manning & Stephen A. Montzka & Paul J. Fraser & Anita L. Ganesan & Ch, 2021. "A decline in emissions of CFC-11 and related chemicals from eastern China," Nature, Nature, vol. 590(7846), pages 433-437, February.
    3. Wu, Di & Hu, Bin & Wang, R.Z., 2021. "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minde An & Luke M. Western & Daniel Say & Liqu Chen & Tom Claxton & Anita L. Ganesan & Ryan Hossaini & Paul B. Krummel & Alistair J. Manning & Jens Mühle & Simon O’Doherty & Ronald G. Prinn & Ray F. W, 2021. "Rapid increase in dichloromethane emissions from China inferred through atmospheric observations," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Zhao, Zhen & Luo, Jielin & Zou, Dexin & Yang, Kaiyin & Wang, Qin & Chen, Guangming, 2023. "Experimental investigation on the inhibition of flame retardants on the flammability of R1234ze(E)," Energy, Elsevier, vol. 263(PE).
    3. Zou, Lingeng & Liu, Ye & Yu, Jianlin, 2023. "Energy, exergy and economic evaluation of a solar enhanced ejector expansion heat pump cycle," Renewable Energy, Elsevier, vol. 217(C).
    4. Bowei Li & Jiahuan Huang & Xiaoyi Hu & Lulu Zhang & Mengyue Ma & Liting Hu & Di Chen & Qianna Du & Yahui Sun & Zhouxiang Cai & Ao Chen & Xinhe Li & Rui Feng & Ronald G. Prinn & Xuekun Fang, 2024. "CCl4 emissions in eastern China during 2021–2022 and exploration of potential new sources," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Wang, Yao & Wang, Qianlong & Yu, Jianlin & Qian, Suxin, 2023. "A heat pump dual temperature display cabinet using natural refrigerants," Applied Energy, Elsevier, vol. 330(PB).
    6. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Zhang, Xinxin & Li, Yang, 2023. "An examination of super dry working fluids used in regenerative organic Rankine cycles," Energy, Elsevier, vol. 263(PD).
    9. Tomc, Urban & Nosan, Simon & Vidrih, Boris & Bogić, Simon & Navickaite, Kristina & Vozel, Katja & Bobič, Miha & Kitanovski, Andrej, 2024. "Small demonstrator of a thermoelectric heat-pump booster for an ultra-low-temperature district-heating substation," Applied Energy, Elsevier, vol. 361(C).
    10. Mei Yang & Ziwei Wang, 2023. "A corpus-based discourse analysis of China’s national image constructed by environmental news in The New York Times," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    11. Longwu Liang & Zhenbo Wang, 2021. "Control Models and Spatiotemporal Characteristics of Air Pollution in the Rapidly Developing Urban Agglomerations," IJERPH, MDPI, vol. 18(11), pages 1-16, June.
    12. Maeng, Heegyu & Kim, Jinyoung & Kwon, Soonbum & Kim, Yongchan, 2023. "Energy and environmental performance of vapor injection heat pumps using R134a, R152a, and R1234yf under various injection conditions," Energy, Elsevier, vol. 280(C).
    13. Marco Gambini & Michele Manno & Michela Vellini, 2024. "Energy and Exergy Analysis of Transcritical CO 2 Cycles for Heat Pump Applications," Sustainability, MDPI, vol. 16(17), pages 1-26, August.
    14. Jia, Fan & Yin, Xiang & Cao, Feng & Fang, Jianmin & Wang, Anci & Wang, Xixi & Yang, Lichen, 2024. "A novel control method for the automotive CO2 heat pumps under inappropriate refrigerant charge conditions," Energy, Elsevier, vol. 286(C).
    15. Chen, Ruihua & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Xu, Weicong, 2022. "Energy recovery from wastewater in deep-sea mining: Feasibility study on an energy supply solution with cold wastewater," Applied Energy, Elsevier, vol. 305(C).
    16. Xiaoyi Hu & Bo Yao & Jens Mühle & Robert C. Rhew & Paul J. Fraser & Simon O’Doherty & Ronald G. Prinn & Xuekun Fang, 2024. "Unexplained high and persistent methyl bromide emissions in China," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Guillermo Martínez-Rodríguez & Cristobal Díaz-de-León & Amanda L. Fuentes-Silva & Juan-Carlos Baltazar & Rafael García-Gutiérrez, 2023. "Detailed Thermo-Economic Assessment of a Heat Pump for Industrial Applications," Energies, MDPI, vol. 16(6), pages 1-12, March.
    18. Dai, Baomin & Liu, Xiao & Liu, Shengchun & Wang, Dabiao & Meng, Chenyang & Wang, Qi & Song, Yifan & Zou, Tonghua, 2022. "Life cycle performance evaluation of cascade-heating high temperature heat pump system for waste heat utilization: Energy consumption, emissions and financial analyses," Energy, Elsevier, vol. 261(PB).
    19. Sun, Dandan & Sun, Shoujun & Song, Qinglu & Wang, Dechang & Wang, Yunhua & Guo, Shuo, 2023. "Energy, exergy, economic and environmental (4E) analysis of two-stage cascade, Linder-Hampson and reverse Brayton systems in the temperature range from −120 °C to −60 °C," Energy, Elsevier, vol. 283(C).
    20. Chen, Xiao & Yu, Ying-jun & Wang, Yi & Feng, Jing-chun & Zhang, Si & Ding, Zhi-bin & Tang, Li & Wu, Xiao-nan & Hu, Jun-lin, 2024. "Mutual disposal of municipal solid waste and flue gas on isolated islands," Applied Energy, Elsevier, vol. 353(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1951-:d:1070055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.