IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1769-d1064185.html
   My bibliography  Save this article

Water Influence on the Determination of the Rock Matrix Bulk Modulus in Reservoir Engineering and Rock-Fluid Coupling Projects

Author

Listed:
  • Dariusz Knez

    (Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Mitra Khalilidermani

    (Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Mohammad Ahmad Mahmoudi Zamani

    (Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, 30-059 Krakow, Poland)

Abstract

This research was conducted to determine how the incorporation of different poroelastic equations would affect the measured rock matrix bulk modulus in the laboratory. To do this, three experimental methods were used to measure the matrix bulk modulus, K s , of seven sandstone specimens taken from the Świętokrzyskie mine in Poland. Those experimental methods were based on the different governing equations in poroelasticty theory. The matrix bulk modulus has a substantial impact on the rock strength against external stresses. Moreover, the rock bulk modulus depends directly on two components: the pore fluid bulk modulus and matrix bulk modulus. The second one is more important as it is much higher than the first one. In this study, the accuracy of those three methods in the measurement of the matrix bulk modulus was evaluated. For this purpose, an acoustic wave propagation apparatus was used to perform the required tests. For each method, an empirical correlation was extracted between the matrix bulk modulus and the applied hydrostatic stress. In all the experiments, an exponential correlation was observed between the matrix bulk modulus and the hydrostatic stress applied on the rock. Furthermore, it was found that the incorporation of the dry bulk modulus in the calculations led to an underestimation of the matrix bulk modulus. In addition, as the hydrostatic stress was raised, the matrix bulk modulus also increased. The applied methodology can be deployed to determine the matrix bulk modulus in coupled rock-fluid problems such as reservoir depletion, hydraulic fracturing, oil recovery enhancement, underground gas storage and land subsidence.

Suggested Citation

  • Dariusz Knez & Mitra Khalilidermani & Mohammad Ahmad Mahmoudi Zamani, 2023. "Water Influence on the Determination of the Rock Matrix Bulk Modulus in Reservoir Engineering and Rock-Fluid Coupling Projects," Energies, MDPI, vol. 16(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1769-:d:1064185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1769/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1769/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Decheng Zhang & Ranjith Pathegama Gamage & Mandadige Samintha Anne Perera & Chengpeng Zhang & Wanniarachchillage Ayal Maneth Wanniarachchi, 2017. "Influence of Water Saturation on the Mechanical Behaviour of Low-Permeability Reservoir Rocks," Energies, MDPI, vol. 10(2), pages 1-19, February.
    2. Dariusz Knez & Mitra Khalilidermani, 2021. "A Review of Different Aspects of Off-Earth Drilling," Energies, MDPI, vol. 14(21), pages 1-18, November.
    3. Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2021. "A Review of the Geomechanics Aspects in Space Exploration," Energies, MDPI, vol. 14(22), pages 1-21, November.
    4. Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2021. "Empirical Formula for Dynamic Biot Coefficient of Sandstone Samples from South-West of Poland," Energies, MDPI, vol. 14(17), pages 1-17, September.
    5. Mitra Khalilidermani & Dariusz Knez, 2022. "A Survey of Application of Mechanical Specific Energy in Petroleum and Space Drilling," Energies, MDPI, vol. 15(9), pages 1-25, April.
    6. Mitra Khalilidermani & Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2021. "Empirical Correlations between the Hydraulic Properties Obtained from the Geoelectrical Methods and Water Well Data of Arak Aquifer," Energies, MDPI, vol. 14(17), pages 1-19, August.
    7. Dariusz Knez & Rafał Wiśniowski & Winnie Ampomaa Owusu, 2019. "Turning Filling Material into Proppant for Coalbed Methane in Poland—Crush Test Results," Energies, MDPI, vol. 12(9), pages 1-6, May.
    8. Andrzej Nowakowski, 2021. "The Influence of Rate of Change in Confining and Pore Pressure on Values of the Modulus of Compressibility of the Rock Skeleton and Biot’s Coefficient," Energies, MDPI, vol. 14(11), pages 1-18, May.
    9. Mohammad Ahmad Mahmoudi Zamani & Dariusz Knez, 2021. "A New Mechanical-Hydrodynamic Safety Factor Index for Sand Production Prediction," Energies, MDPI, vol. 14(11), pages 1-14, May.
    10. Dariusz Knez & Herimitsinjo Rajaoalison, 2022. "Land Subsidence Assessment for Wind Turbine Location in the South-Western Part of Madagascar," Energies, MDPI, vol. 15(13), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mitra Khalilidermani & Dariusz Knez, 2024. "Shear Wave Velocity Applications in Geomechanics with Focus on Risk Assessment in Carbon Capture and Storage Projects," Energies, MDPI, vol. 17(7), pages 1-27, March.
    2. Mohammad Ahmad Mahmoudi Zamani & Dariusz Knez, 2023. "Experimental Investigation on the Relationship between Biot’s Coefficient and Hydrostatic Stress for Enhanced Oil Recovery Projects," Energies, MDPI, vol. 16(13), pages 1-13, June.
    3. Mitra Khalilidermani & Dariusz Knez, 2023. "A Survey on the Shortcomings of the Current Rate of Penetration Predictive Models in Petroleum Engineering," Energies, MDPI, vol. 16(11), pages 1-23, May.
    4. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    2. Mitra Khalilidermani & Dariusz Knez, 2023. "A Survey on the Shortcomings of the Current Rate of Penetration Predictive Models in Petroleum Engineering," Energies, MDPI, vol. 16(11), pages 1-23, May.
    3. Herimitsinjo Rajaoalison & Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2022. "A Multidisciplinary Approach to Evaluate the Environmental Impacts of Hydrocarbon Production in Khuzestan Province, Iran," Energies, MDPI, vol. 15(22), pages 1-19, November.
    4. Dariusz Knez & Herimitsinjo Rajaoalison, 2022. "Land Subsidence Assessment for Wind Turbine Location in the South-Western Part of Madagascar," Energies, MDPI, vol. 15(13), pages 1-13, July.
    5. Mohammad Ahmad Mahmoudi Zamani & Dariusz Knez, 2023. "Experimental Investigation on the Relationship between Biot’s Coefficient and Hydrostatic Stress for Enhanced Oil Recovery Projects," Energies, MDPI, vol. 16(13), pages 1-13, June.
    6. Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2021. "A Review of the Geomechanics Aspects in Space Exploration," Energies, MDPI, vol. 14(22), pages 1-21, November.
    7. Dariusz Knez & Mitra Khalilidermani, 2021. "A Review of Different Aspects of Off-Earth Drilling," Energies, MDPI, vol. 14(21), pages 1-18, November.
    8. Mitra Khalilidermani & Dariusz Knez, 2022. "A Survey of Application of Mechanical Specific Energy in Petroleum and Space Drilling," Energies, MDPI, vol. 15(9), pages 1-25, April.
    9. Mitra Khalilidermani & Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2021. "Empirical Correlations between the Hydraulic Properties Obtained from the Geoelectrical Methods and Water Well Data of Arak Aquifer," Energies, MDPI, vol. 14(17), pages 1-19, August.
    10. Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2021. "Empirical Formula for Dynamic Biot Coefficient of Sandstone Samples from South-West of Poland," Energies, MDPI, vol. 14(17), pages 1-17, September.
    11. Pan Zhang & Yongjun Du & Sijie Han & Qingan Qiu, 2022. "Global Progress in Oil and Gas Well Research Using Bibliometric Analysis Based on VOSviewer and CiteSpace," Energies, MDPI, vol. 15(15), pages 1-27, July.
    12. Camilo Andrés Guerrero-Martin & Angie Tatiana Ortega-Ramírez & Paula Alejandra Perilla Rodríguez & Shalom Jireth Reyes López & Laura Estefanía Guerrero-Martin & Raúl Salinas-Silva & Stefanny Camacho-G, 2023. "Analysis of Environmental Sustainability through a Weighting Matrix in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    13. Wanqing Wang & Shuran Lyu & Yudong Zhang & Shuqi Ma, 2019. "A Risk Assessment Model of Coalbed Methane Development Based on the Matter-Element Extension Method," Energies, MDPI, vol. 12(20), pages 1-30, October.
    14. Chengpeng Zhang & Ranjith Pathegama Gamage & Mandadige Samintha Anna Perera & Jian Zhao, 2017. "Characteristics of Clay-Abundant Shale Formations: Use of CO 2 for Production Enhancement," Energies, MDPI, vol. 10(11), pages 1-27, November.
    15. Mohammad Ahmad Mahmoudi Zamani & Dariusz Knez, 2021. "A New Mechanical-Hydrodynamic Safety Factor Index for Sand Production Prediction," Energies, MDPI, vol. 14(11), pages 1-14, May.
    16. Zhang, Decheng & Ranjith, P.G. & Perera, M.S.A. & Zhang, C.P., 2020. "Influences of test method and loading history on permeability of tight reservoir rocks," Energy, Elsevier, vol. 195(C).
    17. Zhuoxin Dong & Hui Zhang & Jun Li & Kuangsheng Zhang & Yangyong Ou & Zongyu Lu & Jiangang Shi, 2022. "A Method for Evaluating the Rock Breaking Efficiency of Cutters and Optimizing the PDC Cutter Profile—A Study of Igneous Rock Formations in Shunbei Oilfield," Energies, MDPI, vol. 15(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1769-:d:1064185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.