IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6686-d913817.html
   My bibliography  Save this article

A Method for Evaluating the Rock Breaking Efficiency of Cutters and Optimizing the PDC Cutter Profile—A Study of Igneous Rock Formations in Shunbei Oilfield

Author

Listed:
  • Zhuoxin Dong

    (College of Petroleum Engineering, China University of Petroleum, Beijing 100100, China)

  • Hui Zhang

    (College of Petroleum Engineering, China University of Petroleum, Beijing 100100, China)

  • Jun Li

    (College of Petroleum Engineering, China University of Petroleum, Beijing 100100, China)

  • Kuangsheng Zhang

    (Oil & Gas Technology Research Institue of PetroChina Changqing Oilfield Company, Beijing 100085, China)

  • Yangyong Ou

    (Oil & Gas Technology Research Institue of PetroChina Changqing Oilfield Company, Beijing 100085, China)

  • Zongyu Lu

    (PetroChina Xinjiang Oilfield Company, Karamay 834002, China)

  • Jiangang Shi

    (PetroChina Xinjiang Oilfield Company, Karamay 834002, China)

Abstract

The Permian igneous rock in Shunbei Oilfield exhibits high rock strength, which results in a low rate of penetration (ROP) and shortens the cutter’s service life. It is necessary to analyze and evaluate the rock breaking effect of cutters. However, at this stage, the evaluation of the rock breaking effect has been limited to comparing the sizes of the mechanical specific energy (MSE), and the change in the rock breaking efficiency caused by the difference in the shape of the cutters’ surface has not been considered. Therefore, through the establishment of numerical simulation models of a circular cutter, bevel cutter, axe cutter, wedge cutter, and triangular cutter, the evaluation of the rock breaking efficiency of special-shaped cutters was completed. The results show that the triangular cutter and the wedge cutter are suitable for the front row cutter of the polycrystalline diamond compact bit (PDC); the triangular cutter is suitable for drilling into medium–hard formations, the wedge cutter is suitable for drilling into hard formations, and the bevel cutter is suitable for the back row cutter of the PDC, to assist other cutters in the process of rock breaking. The research results can provide the basis for the selection of PDC bit cutters and the design optimization of the bit.

Suggested Citation

  • Zhuoxin Dong & Hui Zhang & Jun Li & Kuangsheng Zhang & Yangyong Ou & Zongyu Lu & Jiangang Shi, 2022. "A Method for Evaluating the Rock Breaking Efficiency of Cutters and Optimizing the PDC Cutter Profile—A Study of Igneous Rock Formations in Shunbei Oilfield," Energies, MDPI, vol. 15(18), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6686-:d:913817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mitra Khalilidermani & Dariusz Knez, 2022. "A Survey of Application of Mechanical Specific Energy in Petroleum and Space Drilling," Energies, MDPI, vol. 15(9), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    2. Mitra Khalilidermani & Dariusz Knez, 2023. "A Survey on the Shortcomings of the Current Rate of Penetration Predictive Models in Petroleum Engineering," Energies, MDPI, vol. 16(11), pages 1-23, May.
    3. Camilo Andrés Guerrero-Martin & Angie Tatiana Ortega-Ramírez & Paula Alejandra Perilla Rodríguez & Shalom Jireth Reyes López & Laura Estefanía Guerrero-Martin & Raúl Salinas-Silva & Stefanny Camacho-G, 2023. "Analysis of Environmental Sustainability through a Weighting Matrix in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    4. Herimitsinjo Rajaoalison & Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2022. "A Multidisciplinary Approach to Evaluate the Environmental Impacts of Hydrocarbon Production in Khuzestan Province, Iran," Energies, MDPI, vol. 15(22), pages 1-19, November.
    5. Dariusz Knez & Herimitsinjo Rajaoalison, 2022. "Land Subsidence Assessment for Wind Turbine Location in the South-Western Part of Madagascar," Energies, MDPI, vol. 15(13), pages 1-13, July.
    6. Mohammad Ahmad Mahmoudi Zamani & Dariusz Knez, 2023. "Experimental Investigation on the Relationship between Biot’s Coefficient and Hydrostatic Stress for Enhanced Oil Recovery Projects," Energies, MDPI, vol. 16(13), pages 1-13, June.
    7. Dariusz Knez & Mitra Khalilidermani & Mohammad Ahmad Mahmoudi Zamani, 2023. "Water Influence on the Determination of the Rock Matrix Bulk Modulus in Reservoir Engineering and Rock-Fluid Coupling Projects," Energies, MDPI, vol. 16(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6686-:d:913817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.