IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5514-d628709.html
   My bibliography  Save this article

Empirical Formula for Dynamic Biot Coefficient of Sandstone Samples from South-West of Poland

Author

Listed:
  • Dariusz Knez

    (Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Mohammad Ahmad Mahmoudi Zamani

    (Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, 30-059 Krakow, Poland)

Abstract

In this research, two empirical correlations have been introduced to calculate the dynamic Biot coefficients of low-porosity and high-porosity sandstone samples from two open pit mines located in South-West Poland. The experiments were conducted using an acoustic velocity measurement apparatus. Under the undrained condition, firstly, the confining pressure was increased in increments of 200 psi, and the values of pore pressure and dynamic elastic modulus were recorded. This experiment was continued until the Skempton coefficient remained in the range of 0.98–1. Secondly, an experiment on the same sample was conducted under drained conditions, and the corresponding dynamic elastic moduli were calculated. Then, using the calculated dynamic elastic moduli, the dynamic Biot coefficient was determined for each sample under different confining pressure. Finally, two empirical correlations were formulated for each sandstone category. The results demonstrate that, as the confining pressure increases, the Biot coefficient decreases from 0.79 to 0.50 and from 0.84 to 0.45 for low-porosity and high-porosity samples, respectively. Furthermore, as the porosity increases, the sandstone behavior increasingly approaches that of soil. The empirical correlations can be used for sandstone formations with the same porosity in projects where there is not a measurement method for the Biot coefficient.

Suggested Citation

  • Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2021. "Empirical Formula for Dynamic Biot Coefficient of Sandstone Samples from South-West of Poland," Energies, MDPI, vol. 14(17), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5514-:d:628709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Awad Ahmed Quosay & Dariusz Knez & Jan Ziaja, 2020. "Hydraulic fracturing: New uncertainty based modeling approach for process design using Monte Carlo simulation technique," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-18, July.
    2. Dariusz Knez & Rafał Wiśniowski & Winnie Ampomaa Owusu, 2019. "Turning Filling Material into Proppant for Coalbed Methane in Poland—Crush Test Results," Energies, MDPI, vol. 12(9), pages 1-6, May.
    3. Mohammad Ahmad Mahmoudi Zamani & Dariusz Knez, 2021. "A New Mechanical-Hydrodynamic Safety Factor Index for Sand Production Prediction," Energies, MDPI, vol. 14(11), pages 1-14, May.
    4. Tri Pham & Ruud Weijermars, 2020. "Hydraulic Fracture Propagation in a Poro-Elastic Medium with Time-Dependent Injection Schedule Using the Time-Stepped Linear Superposition Method (TLSM)," Energies, MDPI, vol. 13(24), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2021. "A Review of the Geomechanics Aspects in Space Exploration," Energies, MDPI, vol. 14(22), pages 1-21, November.
    2. Dariusz Knez & Herimitsinjo Rajaoalison, 2022. "Land Subsidence Assessment for Wind Turbine Location in the South-Western Part of Madagascar," Energies, MDPI, vol. 15(13), pages 1-13, July.
    3. Mohammad Ahmad Mahmoudi Zamani & Dariusz Knez, 2023. "Experimental Investigation on the Relationship between Biot’s Coefficient and Hydrostatic Stress for Enhanced Oil Recovery Projects," Energies, MDPI, vol. 16(13), pages 1-13, June.
    4. Dariusz Knez & Mitra Khalilidermani & Mohammad Ahmad Mahmoudi Zamani, 2023. "Water Influence on the Determination of the Rock Matrix Bulk Modulus in Reservoir Engineering and Rock-Fluid Coupling Projects," Energies, MDPI, vol. 16(4), pages 1-15, February.
    5. Dariusz Knez & Mitra Khalilidermani, 2021. "A Review of Different Aspects of Off-Earth Drilling," Energies, MDPI, vol. 14(21), pages 1-18, November.
    6. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herimitsinjo Rajaoalison & Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2022. "A Multidisciplinary Approach to Evaluate the Environmental Impacts of Hydrocarbon Production in Khuzestan Province, Iran," Energies, MDPI, vol. 15(22), pages 1-19, November.
    2. Mohammad Ahmad Mahmoudi Zamani & Dariusz Knez, 2021. "A New Mechanical-Hydrodynamic Safety Factor Index for Sand Production Prediction," Energies, MDPI, vol. 14(11), pages 1-14, May.
    3. Mitra Khalilidermani & Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2021. "Empirical Correlations between the Hydraulic Properties Obtained from the Geoelectrical Methods and Water Well Data of Arak Aquifer," Energies, MDPI, vol. 14(17), pages 1-19, August.
    4. Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2021. "A Review of the Geomechanics Aspects in Space Exploration," Energies, MDPI, vol. 14(22), pages 1-21, November.
    5. Mitra Khalilidermani & Dariusz Knez, 2023. "A Survey on the Shortcomings of the Current Rate of Penetration Predictive Models in Petroleum Engineering," Energies, MDPI, vol. 16(11), pages 1-23, May.
    6. Dariusz Knez & Herimitsinjo Rajaoalison, 2022. "Land Subsidence Assessment for Wind Turbine Location in the South-Western Part of Madagascar," Energies, MDPI, vol. 15(13), pages 1-13, July.
    7. Mohammad Ahmad Mahmoudi Zamani & Dariusz Knez, 2023. "Experimental Investigation on the Relationship between Biot’s Coefficient and Hydrostatic Stress for Enhanced Oil Recovery Projects," Energies, MDPI, vol. 16(13), pages 1-13, June.
    8. Dariusz Knez & Mitra Khalilidermani, 2021. "A Review of Different Aspects of Off-Earth Drilling," Energies, MDPI, vol. 14(21), pages 1-18, November.
    9. Dariusz Knez & Mitra Khalilidermani & Mohammad Ahmad Mahmoudi Zamani, 2023. "Water Influence on the Determination of the Rock Matrix Bulk Modulus in Reservoir Engineering and Rock-Fluid Coupling Projects," Energies, MDPI, vol. 16(4), pages 1-15, February.
    10. Stefan Zelenak & Erika Skvarekova & Andrea Senova & Gabriel Wittenberger, 2021. "The Usage of UCG Technology as Alternative to Reach Low-Carbon Energy," Energies, MDPI, vol. 14(13), pages 1-15, June.
    11. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    12. Wanqing Wang & Shuran Lyu & Yudong Zhang & Shuqi Ma, 2019. "A Risk Assessment Model of Coalbed Methane Development Based on the Matter-Element Extension Method," Energies, MDPI, vol. 12(20), pages 1-30, October.
    13. Honghua Song & Yixin Zhao & Yaodong Jiang & Weisheng Du, 2020. "Experimental Investigation on the Tensile Strength of Coal: Consideration of the Specimen Size and Water Content," Energies, MDPI, vol. 13(24), pages 1-18, December.
    14. Ion Pană & Iuliana Veronica Gheţiu & Ioana Gabriela Stan & Florinel Dinu & Gheorghe Brănoiu & Silvian Suditu, 2022. "The Use of Hydraulic Fracturing in Stimulation of the Oil and Gas Wells in Romania," Sustainability, MDPI, vol. 14(9), pages 1-33, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5514-:d:628709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.