Physical Modelling of Tidal Stream Turbine Wake Structures under Yaw Conditions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gao, Zhiteng & Li, Ye & Wang, Tongguang & Shen, Wenzhong & Zheng, Xiaobo & Pröbsting, Stefan & Li, Deshun & Li, Rennian, 2021. "Modelling the nacelle wake of a horizontal-axis wind turbine under different yaw conditions," Renewable Energy, Elsevier, vol. 172(C), pages 263-275.
- van Dijk, Mike T. & van Wingerden, Jan-Willem & Ashuri, Turaj & Li, Yaoyu, 2017. "Wind farm multi-objective wake redirection for optimizing power production and loads," Energy, Elsevier, vol. 121(C), pages 561-569.
- Zhang, Jisheng & Lin, Xiangfeng & Wang, Risheng & Guo, Yakun & Zhang, Can & Zhang, Yuquan, 2020. "Flow structures in wake of a pile-supported horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 2321-2334.
- Fleming, Paul A. & Gebraad, Pieter M.O. & Lee, Sang & van Wingerden, Jan-Willem & Johnson, Kathryn & Churchfield, Matt & Michalakes, John & Spalart, Philippe & Moriarty, Patrick, 2014. "Evaluating techniques for redirecting turbine wakes using SOWFA," Renewable Energy, Elsevier, vol. 70(C), pages 211-218.
- Frost, C. & Morris, C.E. & Mason-Jones, A. & O'Doherty, D.M. & O'Doherty, T., 2015. "The effect of tidal flow directionality on tidal turbine performance characteristics," Renewable Energy, Elsevier, vol. 78(C), pages 609-620.
- Adaramola, M.S. & Krogstad, P.-Å., 2011. "Experimental investigation of wake effects on wind turbine performance," Renewable Energy, Elsevier, vol. 36(8), pages 2078-2086.
- Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
- O'Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony & Kennedy, David M., 2015. "Hydrodynamic performance prediction of a tidal current turbine operating in non-uniform inflow conditions," Energy, Elsevier, vol. 93(P2), pages 2483-2496.
- Frost, Carwyn H. & Evans, Paul S. & Harrold, Magnus J. & Mason-Jones, Allan & O'Doherty, Tim & O'Doherty, Daphne M., 2017. "The impact of axial flow misalignment on a tidal turbine," Renewable Energy, Elsevier, vol. 113(C), pages 1333-1344.
- Borg, Mitchell G. & Xiao, Qing & Allsop, Steven & Incecik, Atilla & Peyrard, Christophe, 2022. "A numerical performance analysis of a ducted, high-solidity tidal turbine in yawed flow conditions," Renewable Energy, Elsevier, vol. 193(C), pages 179-194.
- Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
- Galloway, Pascal W. & Myers, Luke E. & Bahaj, AbuBakr S., 2014. "Quantifying wave and yaw effects on a scale tidal stream turbine," Renewable Energy, Elsevier, vol. 63(C), pages 297-307.
- Zong, Haohua & Porté-Agel, Fernando, 2021. "Experimental investigation and analytical modelling of active yaw control for wind farm power optimization," Renewable Energy, Elsevier, vol. 170(C), pages 1228-1244.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.
- Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
- Finnegan, William & Fagan, Edward & Flanagan, Tomas & Doyle, Adrian & Goggins, Jamie, 2020. "Operational fatigue loading on tidal turbine blades using computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 430-440.
- Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
- Zhang, Jisheng & Zhou, Yudi & Lin, Xiangfeng & Wang, Guohui & Guo, Yakun & Chen, Hao, 2022. "Experimental investigation on wake and thrust characteristics of a twin-rotor horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 195(C), pages 701-715.
- Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
- Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
- Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
- He, Ruiyang & Yang, Hongxing & Sun, Shilin & Lu, Lin & Sun, Haiying & Gao, Xiaoxia, 2022. "A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control," Applied Energy, Elsevier, vol. 326(C).
- Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Johlas, Hannah M. & Schmidt, David P. & Lackner, Matthew A., 2022. "Large eddy simulations of curled wakes from tilted wind turbines," Renewable Energy, Elsevier, vol. 188(C), pages 349-360.
- He, Ruiyang & Yang, Hongxing & Lu, Lin & Gao, Xiaoxia, 2024. "Site-specific wake steering strategy for combined power enhancement and fatigue mitigation within wind farms," Renewable Energy, Elsevier, vol. 225(C).
- Moreau, Martin & Germain, Grégory & Maurice, Guillaume, 2023. "Experimental performance and wake study of a ducted twin vertical axis turbine in ebb and flood tide currents at a 1/20th scale," Renewable Energy, Elsevier, vol. 214(C), pages 318-333.
- Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
- Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
- Rubel C. Das & Yu-Lin Shen, 2023. "Analysis of Wind Farms under Different Yaw Angles and Wind Speeds," Energies, MDPI, vol. 16(13), pages 1-19, June.
- Deng, Xu & Zhang, Jisheng & Lin, Xiangfeng, 2024. "Proposal of actuator line-immersed boundary coupling model for tidal stream turbine modeling with hydrodynamics upon scouring morphology," Energy, Elsevier, vol. 292(C).
- He, Ruiyang & Yang, Hongxing & Lu, Lin, 2023. "Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control," Applied Energy, Elsevier, vol. 337(C).
- Rivera-Arreba, Irene & Li, Zhaobin & Yang, Xiaolei & Bachynski-Polić, Erin E., 2024. "Comparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes," Renewable Energy, Elsevier, vol. 221(C).
- Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
More about this item
Keywords
tidal stream energy; experiment; wake structure; yaw angles; turbine alignment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1742-:d:1063489. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.