IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1716-d1062702.html
   My bibliography  Save this article

Influence of Environmental Factors on the Intelligent Management of Photovoltaic and Wind Sections in a Hybrid Power Plant

Author

Listed:
  • Jacek Kusznier

    (Department of Photonics, Electronics and Light Engineering, Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland)

Abstract

The high-efficiency operation of photovoltaic and wind systems is affected by many factors and parameters that should be continuously monitored. Since most of the variable factors are related to weather conditions, they are difficult to predict. Therefore, in order to optimize the operating point of a photovoltaic or wind power plant, it is necessary to observe changes in the subject area. The operation of photovoltaic and wind power plants can complement each other. The results recorded at the hybrid power plant of the Faculty of Electrical Engineering of Bialystok University of Technology are useful for a comprehensive analysis of the power plant operation and the ways to optimize it. This paper presents the influence of environmental factors on the operation of a hybrid photo-voltaic–wind power plant located in the city of Bialystok, Poland. The aim of the study was to present the variable factors on the optimal adjustment of the location of the power plant elements at the stage of its design and selection of the energy management system. The presented measurement data from 2015–2021 allow conclusions to be drawn on the significant impact on the power plant’s operation, taking into account both the average conditions corresponding to the analysed location and the full range of changes in the listed factors.

Suggested Citation

  • Jacek Kusznier, 2023. "Influence of Environmental Factors on the Intelligent Management of Photovoltaic and Wind Sections in a Hybrid Power Plant," Energies, MDPI, vol. 16(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1716-:d:1062702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacek Kusznier & Wojciech Wojtkowski, 2021. "IoT Solutions for Maintenance and Evaluation of Photovoltaic Systems," Energies, MDPI, vol. 14(24), pages 1-24, December.
    2. Adam Idzkowski & Karolina Karasowska & Wojciech Walendziuk, 2020. "Temperature Analysis of the Stand-Alone and Building Integrated Photovoltaic Systems Based on Simulation and Measurement Data," Energies, MDPI, vol. 13(16), pages 1-23, August.
    3. Amjad Ali & K. Almutairi & Muhammad Zeeshan Malik & Kashif Irshad & Vineet Tirth & Salem Algarni & Md. Hasan Zahir & Saiful Islam & Md Shafiullah & Neeraj Kumar Shukla, 2020. "Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions," Energies, MDPI, vol. 13(12), pages 1-37, June.
    4. Grzegorz Ostasz & Dominika Siwiec & Andrzej Pacana, 2022. "Universal Model to Predict Expected Direction of Products Quality Improvement," Energies, MDPI, vol. 15(5), pages 1-18, February.
    5. Fares, Dalila & Fathi, Mohamed & Mekhilef, Saad, 2022. "Performance evaluation of metaheuristic techniques for optimal sizing of a stand-alone hybrid PV/wind/battery system," Applied Energy, Elsevier, vol. 305(C).
    6. Shaheer Ansari & Afida Ayob & Molla S. Hossain Lipu & Mohamad Hanif Md Saad & Aini Hussain, 2021. "A Review of Monitoring Technologies for Solar PV Systems Using Data Processing Modules and Transmission Protocols: Progress, Challenges and Prospects," Sustainability, MDPI, vol. 13(15), pages 1-34, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haobo Shi & Yanping Xu & Baodi Ding & Jinsong Zhou & Pei Zhang, 2023. "Long-Term Solar Power Time-Series Data Generation Method Based on Generative Adversarial Networks and Sunrise–Sunset Time Correction," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    2. Grzegorz Drałus & Damian Mazur & Jacek Kusznier & Jakub Drałus, 2023. "Application of Artificial Intelligence Algorithms in Multilayer Perceptron and Elman Networks to Predict Photovoltaic Power Plant Generation," Energies, MDPI, vol. 16(18), pages 1-23, September.
    3. Beata Hysa & Anna Mularczyk, 2024. "PESTEL Analysis of the Photovoltaic Market in Poland—A Systematic Review of Opportunities and Threats," Resources, MDPI, vol. 13(10), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    2. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    3. Astitva Kumar & Mohammad Rizwan & Uma Nangia & Muhannad Alaraj, 2021. "Grey Wolf Optimizer-Based Array Reconfiguration to Enhance Power Production from Solar Photovoltaic Plants under Different Scenarios," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    4. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    5. Andrzej Pacana & Dominika Siwiec & Robert Ulewicz & Malgorzata Ulewicz, 2024. "A Novelty Model Employing the Quality Life Cycle Assessment (QLCA) Indicator and Frameworks for Selecting Qualitative and Environmental Aspects for Sustainable Product Development," Sustainability, MDPI, vol. 16(17), pages 1-24, September.
    6. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    7. Manuela Ingaldi & Robert Ulewicz, 2024. "The Business Model of a Circular Economy in the Innovation and Improvement of Metal Processing," Sustainability, MDPI, vol. 16(13), pages 1-27, June.
    8. Fernando García-Muñoz & Miguel Alfaro & Guillermo Fuertes & Manuel Vargas, 2022. "DC Optimal Power Flow Model to Assess the Irradiance Effect on the Sizing and Profitability of the PV-Battery System," Energies, MDPI, vol. 15(12), pages 1-16, June.
    9. Tomasz Popławski & Sebastian Dudzik & Piotr Szeląg & Janusz Baran, 2021. "A Case Study of a Virtual Power Plant (VPP) as a Data Acquisition Tool for PV Energy Forecasting," Energies, MDPI, vol. 14(19), pages 1-24, September.
    10. Tadeusz Olejarz & Dominika Siwiec & Andrzej Pacana, 2022. "Method of Qualitative–Environmental Choice of Devices Converting Green Energy," Energies, MDPI, vol. 15(23), pages 1-22, November.
    11. Duberney Murillo-Yarce & José Alarcón-Alarcón & Marco Rivera & Carlos Restrepo & Javier Muñoz & Carlos Baier & Patrick Wheeler, 2020. "A Review of Control Techniques in Photovoltaic Systems," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    12. Ameer Al-Khaykan & Ibrahim H. Al-Kharsan & Mohammed Omar Ali & Ali Jawad Alrubaie & Hassan Falah Fakhruldeen & J. M. Counsell, 2022. "Impact of Multi-Year Analysis on the Optimal Sizing and Control Strategy of Hybrid Energy Systems," Energies, MDPI, vol. 16(1), pages 1-17, December.
    13. Alfredo Gil-Velasco & Carlos Aguilar-Castillo, 2021. "A Modification of the Perturb and Observe Method to Improve the Energy Harvesting of PV Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-12, April.
    14. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    15. Koholé, Yemeli Wenceslas & Wankouo Ngouleu, Clint Ameri & Fohagui, Fodoup Cyrille Vincelas & Tchuen, Ghislain, 2024. "Optimization of an off-grid hybrid photovoltaic/wind/diesel/fuel cell system for residential applications power generation employing evolutionary algorithms," Renewable Energy, Elsevier, vol. 224(C).
    16. Robert Ulewicz & Dominika Siwiec & Andrzej Pacana, 2023. "Sustainable Vehicle Design Considering Quality Level and Life Cycle Environmental Assessment (LCA)," Energies, MDPI, vol. 16(24), pages 1-23, December.
    17. Thirunavukkarasu, M. & Lala, Himadri & Sawle, Yashwant, 2023. "Techno-economic-environmental analysis of off-grid hybrid energy systems using honey badger optimizer," Renewable Energy, Elsevier, vol. 218(C).
    18. Agüera-Pérez, Agustín & Espinosa-Gavira, Manuel Jesús & Palomares-Salas, José Carlos & González-de-la-Rosa, Juan José & Sierra-Fernández, José María & Florencias-Oliveros, Olivia, 2024. "Meteorological contexts in the analysis of cloud-induced photovoltaic transients: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    19. Sukanta Roy & Anjan Debnath & Mohd Tariq & Milad Behnamfar & Arif Sarwat, 2023. "Characterizing Current THD’s Dependency on Solar Irradiance and Supraharmonics Profiling for a Grid-Tied Photovoltaic Power Plant," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    20. Hina Gohar Ali & Ramon Vilanova Arbos, 2020. "Chattering Free Adaptive Sliding Mode Controller for Photovoltaic Panels with Maximum Power Point Tracking," Energies, MDPI, vol. 13(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1716-:d:1062702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.