IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1416-d1053442.html
   My bibliography  Save this article

A Novel Technique for Fast Ohmic Resistance Measurement to Evaluate the Aging of Lithium-Ion xEVs Batteries

Author

Listed:
  • Muhammad Sheraz

    (Department of Electrical Engineering, Soongsil University, Seoul 06978, Republic of Korea)

  • Woojin Choi

    (Department of Electrical Engineering, Soongsil University, Seoul 06978, Republic of Korea)

Abstract

Lithium-ion batteries are gaining more attention due to the rapid growth of electrical vehicles (EVs). Additionally, the industry is putting a lot of effort into reusing EV batteries in energy storage systems (ESS). The optimal performance of the repurposed battery system is highly dependent on the individual batteries used in it. These batteries need to be similar in terms of battery capacity, state of health (SOH), and remaining useful life (RUL). Therefore, battery grading techniques are expected to play a vital role in this newly emerging industry. There are various methods suggested to evaluate the aging of a battery in terms of capacity, SOH, and RUL. The use of ohmic resistance is one approach, as it varies with the aging of the battery. In order to measure the ohmic resistance, electrochemical impedance spectroscopy (EIS) is used, followed by the curve fitting procedures. In this research a novel method is suggested to measure the ohmic resistance without performing the broadband conventional EIS test and the curve fitting. Since the battery is perturbed for a specified frequency band (1 kHz to 100 Hz) using the linearly distributed phased multi-sine signal, only 1 sec perturbation is required, and the ohmic resistance can be directly calculated by using two impedance values. Thus, the measurement speed is several times faster than that of the conventional EIS methods. Hence, it is a suitable and convenient technique for the mass testing of the batteries. The accuracy and validity of the proposed technique are verified by testing three types of batteries. The percentage difference in the measured ohmic resistance value between the conventional and the proposed technique is less than 0.15% for all the batteries tested.

Suggested Citation

  • Muhammad Sheraz & Woojin Choi, 2023. "A Novel Technique for Fast Ohmic Resistance Measurement to Evaluate the Aging of Lithium-Ion xEVs Batteries," Energies, MDPI, vol. 16(3), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1416-:d:1053442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lukáš Janota & Tomáš Králík & Jaroslav Knápek, 2020. "Second Life Batteries Used in Energy Storage for Frequency Containment Reserve Service," Energies, MDPI, vol. 13(23), pages 1-36, December.
    2. Galeotti, Matteo & Cinà, Lucio & Giammanco, Corrado & Cordiner, Stefano & Di Carlo, Aldo, 2015. "Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy," Energy, Elsevier, vol. 89(C), pages 678-686.
    3. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    4. Radoslaw Miskiewicz, 2022. "Clean and Affordable Energy within Sustainable Development Goals: The Role of Governance Digitalization," Energies, MDPI, vol. 15(24), pages 1-17, December.
    5. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdul Basit Khan & Abdul Shakoor Akram & Woojin Choi, 2024. "State of Charge Estimation of Flooded Lead Acid Battery Using Adaptive Unscented Kalman Filter," Energies, MDPI, vol. 17(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    3. Lin, Yan-Hui & Ruan, Sheng-Jia & Chen, Yun-Xia & Li, Yan-Fu, 2023. "Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    5. Cai, Yishan & Yang, Lin & Deng, Zhongwei & Zhao, Xiaowei & Deng, Hao, 2018. "Online identification of lithium-ion battery state-of-health based on fast wavelet transform and cross D-Markov machine," Energy, Elsevier, vol. 147(C), pages 621-635.
    6. Pranav Nair & Vinay Vakharia & Himanshu Borade & Milind Shah & Vishal Wankhede, 2023. "Predicting Li-Ion Battery Remaining Useful Life: An XDFM-Driven Approach with Explainable AI," Energies, MDPI, vol. 16(15), pages 1-19, July.
    7. Hao Sun & Bo Jiang & Heze You & Bojian Yang & Xueyuan Wang & Xuezhe Wei & Haifeng Dai, 2021. "Quantitative Analysis of Degradation Modes of Lithium-Ion Battery under Different Operating Conditions," Energies, MDPI, vol. 14(2), pages 1-19, January.
    8. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    9. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Inclusive Economic Growth: Relationship between Energy and Governance Efficiency," Energies, MDPI, vol. 16(6), pages 1-16, March.
    10. Yana Us & Tetyana Pimonenko & Oleksii Lyulyov, 2023. "Corporate Social Responsibility and Renewable Energy Development for the Green Brand within SDGs: A Meta-Analytic Review," Energies, MDPI, vol. 16(5), pages 1-18, February.
    11. Xuezhe Wei & Xueyuan Wang & Haifeng Dai, 2018. "Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling," Energies, MDPI, vol. 11(1), pages 1-15, January.
    12. Wang, Chengshan & Liu, Yixin & Li, Xialin & Guo, Li & Qiao, Lei & Lu, Hai, 2016. "Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system," Energy, Elsevier, vol. 97(C), pages 90-104.
    13. Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
    14. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    15. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    16. Guanjun Ji & Di Tang & Junxiong Wang & Zheng Liang & Haocheng Ji & Jun Ma & Zhaofeng Zhuang & Song Liu & Guangmin Zhou & Hui-Ming Cheng, 2024. "Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    18. Fatmawati Fatmawati & Nuryanti Mustari & Haerana Haerana & Risma Niswaty & Abdillah Abdillah, 2022. "Waste Bank Policy Implementation through Collaborative Approach: Comparative Study—Makassar and Bantaeng, Indonesia," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    19. Andrzej Pacana & Dominika Siwiec & Robert Ulewicz & Malgorzata Ulewicz, 2024. "A Novelty Model Employing the Quality Life Cycle Assessment (QLCA) Indicator and Frameworks for Selecting Qualitative and Environmental Aspects for Sustainable Product Development," Sustainability, MDPI, vol. 16(17), pages 1-24, September.
    20. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1416-:d:1053442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.