IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1311-d1047537.html
   My bibliography  Save this article

Application of the Generalized Normal Distribution Optimization Algorithm to the Optimal Selection of Conductors in Three-Phase Asymmetric Distribution Networks

Author

Listed:
  • Julián Alejandro Vega-Forero

    (Grupo de Compatibilidad e Interferencia Electromagnética, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia)

  • Jairo Stiven Ramos-Castellanos

    (Grupo de Compatibilidad e Interferencia Electromagnética, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia)

  • Oscar Danilo Montoya

    (Grupo de Compatibilidad e Interferencia Electromagnética, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
    Laboratorio Inteligente de Energía, Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia)

Abstract

This article addresses the problem of the optimal selection of conductors in asymmetric three-phase distribution networks from a combinatorial optimization perspective, where the problem is represented by a mixed-integer nonlinear programming (MINLP) model that is solved using a master-slave (MS) optimization strategy. In the master stage, an optimization model known as the generalized normal distribution optimization (GNDO) algorithm is proposed with an improvement stage based on the vortex search algorithm (VSA). Both algorithms work with discrete-continuous coding that allows us to represent the locations and gauges of the different conductors in the electrical distribution system. For the slave stage, the backward/forward sweep (BFS) algorithm is adopted. The numerical results obtained in the IEEE 8- and 27-bus systems demonstrate the applicability, efficiency, and robustness of this optimization methodology, which, in comparison with current methodologies such as the Newton metaheuristic algorithm, shows significant improvements in the values of the objective function regarding the balanced demand scenario for the 8- and 27-bus test systems (i.e., 10.30% and 1.40% respectively). On the other hand, for the unbalanced demand scenario, a reduction of 1.43% was obtained in the 27-bus system, whereas no improvement was obtained in the 8-bus grid. An additional simulation scenario associated with the three-phase version of the IEEE33-bus grid under unbalanced operating conditions is analyzed considering three possible load profiles. The first load profile corresponds to the yearly operation under the peak load conduction, the second case is associated with a daily demand profile, and the third operation case discretizes the demand profile in three periods with lengths of 1000 h, 6760 h, and 1000 h with demands of 100%, 60% and 30% of the peak load case. Numerical results show the strong influence of the expected demand behavior on the plan’s total costs, with variations upper than USD/year 260,000.00 between different cases of analysis. All implementations were developed in the MATLAB ® programming environment.

Suggested Citation

  • Julián Alejandro Vega-Forero & Jairo Stiven Ramos-Castellanos & Oscar Danilo Montoya, 2023. "Application of the Generalized Normal Distribution Optimization Algorithm to the Optimal Selection of Conductors in Three-Phase Asymmetric Distribution Networks," Energies, MDPI, vol. 16(3), pages 1-35, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1311-:d:1047537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Ahmadian & Ali Elkamel & Abdelkader Mazouz, 2019. "An Improved Hybrid Particle Swarm Optimization and Tabu Search Algorithm for Expansion Planning of Large Dimension Electric Distribution Network," Energies, MDPI, vol. 12(16), pages 1-14, August.
    2. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    3. Koziel, Sylvie & Hilber, Patrik & Westerlund, Per & Shayesteh, Ebrahim, 2021. "Investments in data quality: Evaluating impacts of faulty data on asset management in power systems," Applied Energy, Elsevier, vol. 281(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamza Mubarak & Nurulafiqah Nadzirah Mansor & Hazlie Mokhlis & Mahazani Mohamad & Hasmaini Mohamad & Munir Azam Muhammad & Mohammad Al Samman & Suhail Afzal, 2021. "Optimum Distribution System Expansion Planning Incorporating DG Based on N-1 Criterion for Sustainable System," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
    2. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    3. Héctor Migallón & Akram Belazi & José-Luis Sánchez-Romero & Héctor Rico & Antonio Jimeno-Morenilla, 2020. "Settings-Free Hybrid Metaheuristic General Optimization Methods," Mathematics, MDPI, vol. 8(7), pages 1-25, July.
    4. Klyapovskiy, Sergey & You, Shi & Michiorri, Andrea & Kariniotakis, George & Bindner, Henrik W., 2019. "Incorporating flexibility options into distribution grid reinforcement planning: A techno-economic framework approach," Applied Energy, Elsevier, vol. 254(C).
    5. Stavros Lazarou & Vasiliki Vita & Lambros Ekonomou, 2018. "Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-17, November.
    6. Oscar Danilo Montoya & Walter Gil-González & Edwin Rivas-Trujillo, 2020. "Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids," Energies, MDPI, vol. 13(9), pages 1-20, May.
    7. Syed Ali Abbas Kazmi & Abdul Kashif Janjua & Dong Ryeol Shin, 2018. "Enhanced Voltage Stability Assessment Index Based Planning Approach for Mesh Distribution Systems," Energies, MDPI, vol. 11(5), pages 1-36, May.
    8. Mohamed Abd-El-Hakeem Mohamed & Ziad M. Ali & Mahrous Ahmed & Saad F. Al-Gahtani, 2021. "Energy Saving Maximization of Balanced and Unbalanced Distribution Power Systems via Network Reconfiguration and Optimum Capacitor Allocation Using a Hybrid Metaheuristic Algorithm," Energies, MDPI, vol. 14(11), pages 1-24, May.
    9. Jiaqi Liu & Hongji Hu & Samson S. Yu & Hieu Trinh, 2023. "Virtual Power Plant with Renewable Energy Sources and Energy Storage Systems for Sustainable Power Grid-Formation, Control Techniques and Demand Response," Energies, MDPI, vol. 16(9), pages 1-28, April.
    10. Syed Ali Abbas Kazmi & Usama Ameer Khan & Hafiz Waleed Ahmad & Sajid Ali & Dong Ryeol Shin, 2020. "A Techno-Economic Centric Integrated Decision-Making Planning Approach for Optimal Assets Placement in Meshed Distribution Network Across the Load Growth," Energies, MDPI, vol. 13(6), pages 1-71, March.
    11. Peng Jiang & Xihao Dou & Jun Dong & Hexiang Huang & Yuanyuan Wang, 2022. "Terminal Node of Active Distribution Network Correlation Compactness Model and Application Based on Complex Network Topology Graph," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    12. Emilio Ghiani & Andrea Giordano & Andrea Nieddu & Luca Rosetti & Fabrizio Pilo, 2019. "Planning of a Smart Local Energy Community: The Case of Berchidda Municipality (Italy)," Energies, MDPI, vol. 12(24), pages 1-14, December.
    13. Thongsavanh Keokhoungning & Suttichai Premrudeepreechacharn & Wullapa Wongsinlatam & Ariya Namvong & Tawun Remsungnen & Nongram Mueanrit & Kanda Sorn-in & Satit Kravenkit & Apirat Siritaratiwat & Chav, 2022. "Transmission Network Expansion Planning with High-Penetration Solar Energy Using Particle Swarm Optimization in Lao PDR toward 2030," Energies, MDPI, vol. 15(22), pages 1-19, November.
    14. Aldemar Leguizamon-Perilla & Juan S. Rodriguez-Bernal & Laidi Moralez-Cruz & Nidia Isabel Farfán-Martinez & César Nieto-Londoño & Rafael E. Vásquez & Ana Escudero-Atehortua, 2023. "Digitalisation and Modernisation of Hydropower Operating Facilities to Support the Colombian Energy Mix Flexibility," Energies, MDPI, vol. 16(7), pages 1-17, March.
    15. Rastgou, Abdollah, 2024. "Distribution network expansion planning: An updated review of current methods and new challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Julián David Pradilla-Rozo & Julián Alejandro Vega-Forero & Oscar Danilo Montoya, 2023. "Application of the Gradient-Based Metaheuristic Optimizerto Solve the Optimal Conductor Selection Problemin Three-Phase Asymmetric Distribution Networks," Energies, MDPI, vol. 16(2), pages 1-29, January.
    17. Bruno Canizes & João Soares & Zita Vale & Juan M. Corchado, 2019. "Optimal Distribution Grid Operation Using DLMP-Based Pricing for Electric Vehicle Charging Infrastructure in a Smart City," Energies, MDPI, vol. 12(4), pages 1-40, February.
    18. Matteo Troncia & Marco Galici & Mario Mureddu & Emilio Ghiani & Fabrizio Pilo, 2019. "Distributed Ledger Technologies for Peer-to-Peer Local Markets in Distribution Networks," Energies, MDPI, vol. 12(17), pages 1-19, August.
    19. Syed Ali Abbas Kazmi & Usama Ameer Khan & Waleed Ahmad & Muhammad Hassan & Fahim Ahmed Ibupoto & Syed Basit Ali Bukhari & Sajid Ali & M. Mahad Malik & Dong Ryeol Shin, 2021. "Multiple (TEES)-Criteria-Based Sustainable Planning Approach for Mesh-Configured Distribution Mechanisms across Multiple Load Growth Horizons," Energies, MDPI, vol. 14(11), pages 1-44, May.
    20. Muhammad Mahad Malik & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Bader Alharbi & Hamoud Alafnan & Halemah Alshehry, 2023. "Climate Change Impacts Quantification on the Domestic Side of Electrical Grid and Respective Mitigation Strategy across Medium Horizon 2030," Sustainability, MDPI, vol. 15(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1311-:d:1047537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.