IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6490-d653128.html
   My bibliography  Save this article

An Optimal Control Scheme for Load Bus Voltage Regulation and Reactive Power-Sharing in an Islanded Microgrid

Author

Listed:
  • Muhammad Zahid Khan

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
    Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore 54000, Pakistan)

  • Chaoxu Mu

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

  • Salman Habib

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
    Department of Electrical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Khurram Hashmi

    (Department of Electrical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Emad M. Ahmed

    (Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
    Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Waleed Alhosaini

    (Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
    Engineering and Applied Sciences Research Unit, Jouf University, Sakaka 72388, Saudi Arabia)

Abstract

This paper presents an optimal control scheme for an islanded microgrid (MG), which performs reactive power-sharing and voltage regulation. Two-fold objectives are achieved, i.e., the load estimation strategy, firstly, approximates the MG’s impedance and transmits this information through a communication link. Based on approximated impedance information, an optimal regulator is then constructed to send optimal control commands to respective local power controllers of each distributed generation unit. An optimal regulator is a constraints optimized problem, mainly responsible to restore the buses’ voltage magnitudes and realize power-sharing proportionally. The important aspect of this control approach is that the voltage magnitude information is only required to be transferred to each inverter’s controller. In parallel, a secondary control layer for frequency restoration is implemented to minimize the system frequency deviations. The MATLAB/Simulink and experimental results obtained under load disturbances show the effectiveness for optimizing the voltage and power. Modeling and analysis are also verified through stability analysis using system-wide mathematical small-signal models.

Suggested Citation

  • Muhammad Zahid Khan & Chaoxu Mu & Salman Habib & Khurram Hashmi & Emad M. Ahmed & Waleed Alhosaini, 2021. "An Optimal Control Scheme for Load Bus Voltage Regulation and Reactive Power-Sharing in an Islanded Microgrid," Energies, MDPI, vol. 14(20), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6490-:d:653128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vandoorn, T.L. & De Kooning, J.D.M. & Meersman, B. & Vandevelde, L., 2013. "Review of primary control strategies for islanded microgrids with power-electronic interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 613-628.
    2. Muhammad Zahid Khan & Chaoxu Mu & Salman Habib & Waleed Alhosaini & Emad M. Ahmed, 2021. "An Enhanced Distributed Voltage Regulation Scheme for Radial Feeder in Islanded Microgrid," Energies, MDPI, vol. 14(19), pages 1-19, September.
    3. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mojtaba Hajihosseini & Vinko Lešić & Husam I. Shaheen & Paknoosh Karimaghaee, 2022. "Sliding Mode Controller for Parameter-Variable Load Sharing in Islanded AC Microgrid," Energies, MDPI, vol. 15(16), pages 1-17, August.
    2. Omar Makram Kamel & Ahmed A. Zaki Diab & Mohamed Metwally Mahmoud & Ameena Saad Al-Sumaiti & Hamdy M. Sultan, 2023. "Performance Enhancement of an Islanded Microgrid with the Support of Electrical Vehicle and STATCOM Systems," Energies, MDPI, vol. 16(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    2. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Kevin Tomsovic, 2022. "An MILP-Based Distributed Energy Management for Coordination of Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-20, September.
    3. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    5. Julián Alejandro Vega-Forero & Jairo Stiven Ramos-Castellanos & Oscar Danilo Montoya, 2023. "Application of the Generalized Normal Distribution Optimization Algorithm to the Optimal Selection of Conductors in Three-Phase Asymmetric Distribution Networks," Energies, MDPI, vol. 16(3), pages 1-35, January.
    6. Miveh, Mohammad Reza & Rahmat, Mohd Fadli & Ghadimi, Ali Asghar & Mustafa, Mohd Wazir, 2016. "Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1592-1610.
    7. Feng, Wei & Jin, Ming & Liu, Xu & Bao, Yi & Marnay, Chris & Yao, Cheng & Yu, Jiancheng, 2018. "A review of microgrid development in the United States – A decade of progress on policies, demonstrations, controls, and software tools," Applied Energy, Elsevier, vol. 228(C), pages 1656-1668.
    8. Klyapovskiy, Sergey & You, Shi & Michiorri, Andrea & Kariniotakis, George & Bindner, Henrik W., 2019. "Incorporating flexibility options into distribution grid reinforcement planning: A techno-economic framework approach," Applied Energy, Elsevier, vol. 254(C).
    9. Stavros Lazarou & Vasiliki Vita & Lambros Ekonomou, 2018. "Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-17, November.
    10. Oscar Danilo Montoya & Walter Gil-González & Edwin Rivas-Trujillo, 2020. "Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids," Energies, MDPI, vol. 13(9), pages 1-20, May.
    11. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Aditya Sundararajan & Mohammed Olama & Yang Chen, 2023. "Distributed Energy Management for Networked Microgrids with Hardware-in-the-Loop Validation," Energies, MDPI, vol. 16(7), pages 1-27, March.
    12. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    13. Amjad Ali & Wuhua Li & Rashid Hussain & Xiangning He & Barry W. Williams & Abdul Hameed Memon, 2017. "Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China," Sustainability, MDPI, vol. 9(7), pages 1-28, June.
    14. Arul, P.G. & Ramachandaramurthy, Vigna K. & Rajkumar, R.K., 2015. "Control strategies for a hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 597-608.
    15. Guodong Liu & Zhi Li & Yaosuo Xue & Kevin Tomsovic, 2022. "Microgrid Assisted Design for Remote Areas," Energies, MDPI, vol. 15(10), pages 1-23, May.
    16. Syed Ali Abbas Kazmi & Abdul Kashif Janjua & Dong Ryeol Shin, 2018. "Enhanced Voltage Stability Assessment Index Based Planning Approach for Mesh Distribution Systems," Energies, MDPI, vol. 11(5), pages 1-36, May.
    17. Jiaqi Liu & Hongji Hu & Samson S. Yu & Hieu Trinh, 2023. "Virtual Power Plant with Renewable Energy Sources and Energy Storage Systems for Sustainable Power Grid-Formation, Control Techniques and Demand Response," Energies, MDPI, vol. 16(9), pages 1-28, April.
    18. Syed Ali Abbas Kazmi & Usama Ameer Khan & Hafiz Waleed Ahmad & Sajid Ali & Dong Ryeol Shin, 2020. "A Techno-Economic Centric Integrated Decision-Making Planning Approach for Optimal Assets Placement in Meshed Distribution Network Across the Load Growth," Energies, MDPI, vol. 13(6), pages 1-71, March.
    19. Luís F. N. Lourenço & Filipe Perez & Alessio Iovine & Gilney Damm & Renato M. Monaro & Maurício B. C. Salles, 2021. "Stability Analysis of Grid-Forming MMC-HVDC Transmission Connected to Legacy Power Systems," Energies, MDPI, vol. 14(23), pages 1-25, December.
    20. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6490-:d:653128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.