IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v281y2021ics0306261920314896.html
   My bibliography  Save this article

Investments in data quality: Evaluating impacts of faulty data on asset management in power systems

Author

Listed:
  • Koziel, Sylvie
  • Hilber, Patrik
  • Westerlund, Per
  • Shayesteh, Ebrahim

Abstract

Data play an essential role in asset management decisions. The amount of data is increasing through accumulating historical data records, new measuring devices, and communication technology, notably with the evolution toward smart grids. Consequently, the management of data quantity and quality is becoming even more relevant for asset managers to meet efficiency and reliability requirements for power grids. In this work, we propose an innovative data quality management framework enabling asset managers (i) to quantify the impact of poor data quality, and (ii) to determine the conditions under which an investment in data quality improvement is required. To this end, an algorithm is used to determine the optimal year for component replacement based on three scenarios, a Reference scenario, an Imperfect information scenario, and an Investment in higher data quality scenario. Our results indicate that (i) the impact on the optimal year of replacement is the highest for middle-aged components; (ii) the profitability of investments in data quality improvement depends on various factors, including data quality, and the cost of investment in data quality improvement. Finally, we discuss the implementation of the proposed models to control data quality in practice, while taking into account real-world technological and economic limitations.

Suggested Citation

  • Koziel, Sylvie & Hilber, Patrik & Westerlund, Per & Shayesteh, Ebrahim, 2021. "Investments in data quality: Evaluating impacts of faulty data on asset management in power systems," Applied Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314896
    DOI: 10.1016/j.apenergy.2020.116057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314896
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Kun & Ding, Yan & Zhu, Neng & Yang, Fan & Wang, Qiaochu, 2018. "Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: A case study in Tianjin," Applied Energy, Elsevier, vol. 229(C), pages 352-363.
    2. Donald P. Ballou & Harold L. Pazer, 1985. "Modeling Data and Process Quality in Multi-Input, Multi-Output Information Systems," Management Science, INFORMS, vol. 31(2), pages 150-162, February.
    3. Yao Zhang & Fan Lin & Ke Wang, 2020. "Robustness of Short-Term Wind Power Forecasting against False Data Injection Attacks," Energies, MDPI, vol. 13(15), pages 1-21, July.
    4. Fotouhi Ghazvini, M.A. & Morais, Hugo & Vale, Zita, 2012. "Coordination between mid-term maintenance outage decisions and short-term security-constrained scheduling in smart distribution systems," Applied Energy, Elsevier, vol. 96(C), pages 281-291.
    5. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2013. "Operational planning optimization of steam power plants considering equipment failure in petrochemical complex," Applied Energy, Elsevier, vol. 112(C), pages 1247-1264.
    6. Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
    7. Sampath, Suresh & Ogaji, Stephen & Singh, Riti & Probert, Douglas, 2002. "Engine-fault diagnostics:an optimisation procedure," Applied Energy, Elsevier, vol. 73(1), pages 47-70, September.
    8. Chen, Junghui & Hsu, Tong-Yang & Chen, Chih-Chien & Cheng, Yi-Cheng, 2010. "Monitoring combustion systems using HMM probabilistic reasoning in dynamic flame images," Applied Energy, Elsevier, vol. 87(7), pages 2169-2179, July.
    9. Rocchetta, R. & Bellani, L. & Compare, M. & Zio, E. & Patelli, E., 2019. "A reinforcement learning framework for optimal operation and maintenance of power grids," Applied Energy, Elsevier, vol. 241(C), pages 291-301.
    10. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    11. Azmat Ullah & Wei Jiang, 2019. "Optimal periodic replacement policy for a warranted product subject to multi modes failure process," Journal of Management Analytics, Taylor & Francis Journals, vol. 6(2), pages 154-172, April.
    12. Zhao, Xufeng & Al-Khalifa, Khalifa N. & Magid Hamouda, Abdel & Nakagawa, Toshio, 2017. "Age replacement models: A summary with new perspectives and methods," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 95-105.
    13. Kopanos, Georgios M. & Xenos, Dionysios P. & Cicciotti, Matteo & Pistikopoulos, Efstratios N. & Thornhill, Nina F., 2015. "Optimization of a network of compressors in parallel: Operational and maintenance planning – The air separation plant case," Applied Energy, Elsevier, vol. 146(C), pages 453-470.
    14. Omitaomu, Olufemi A. & Blevins, Brandon R. & Jochem, Warren C. & Mays, Gary T. & Belles, Randy & Hadley, Stanton W. & Harrison, Thomas J. & Bhaduri, Budhendra L. & Neish, Bradley S. & Rose, Amy N., 2012. "Adapting a GIS-based multicriteria decision analysis approach for evaluating new power generating sites," Applied Energy, Elsevier, vol. 96(C), pages 292-301.
    15. Fan, Yuling & Xia, Xiaohua, 2017. "A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance," Applied Energy, Elsevier, vol. 189(C), pages 327-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julián Alejandro Vega-Forero & Jairo Stiven Ramos-Castellanos & Oscar Danilo Montoya, 2023. "Application of the Generalized Normal Distribution Optimization Algorithm to the Optimal Selection of Conductors in Three-Phase Asymmetric Distribution Networks," Energies, MDPI, vol. 16(3), pages 1-35, January.
    2. Aldemar Leguizamon-Perilla & Juan S. Rodriguez-Bernal & Laidi Moralez-Cruz & Nidia Isabel Farfán-Martinez & César Nieto-Londoño & Rafael E. Vásquez & Ana Escudero-Atehortua, 2023. "Digitalisation and Modernisation of Hydropower Operating Facilities to Support the Colombian Energy Mix Flexibility," Energies, MDPI, vol. 16(7), pages 1-17, March.
    3. Vadim Davydov & Bogdan Reznikov & Valentin Dudkin, 2023. "New Optical System for Long Distance Control of Electrical Energy Flows," Energies, MDPI, vol. 16(3), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torrado, Nuria, 2022. "Optimal component-type allocation and replacement time policies for parallel systems having multi-types dependent components," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    2. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    3. Dong-Hoon Kim & Eun-Kyu Lee & Naik Bakht Sania Qureshi, 2020. "Peak-Load Forecasting for Small Industries: A Machine Learning Approach," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    4. Asadi, Majid, 2023. "On a parametric model for the mean number of system repairs with applications," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Fath U Min Ullah & Noman Khan & Tanveer Hussain & Mi Young Lee & Sung Wook Baik, 2021. "Diving Deep into Short-Term Electricity Load Forecasting: Comparative Analysis and a Novel Framework," Mathematics, MDPI, vol. 9(6), pages 1-22, March.
    6. Choo Yeon Kim & Seong Soo Cha, 2023. "Effect of SNS Characteristics for Dining Out on Customer Satisfaction and Online Word of Mouth," SAGE Open, , vol. 13(3), pages 21582440231, September.
    7. Qian, Jiaxin & Wu, Jiahui & Yao, Lei & Mahmut, Saniye & Zhang, Qiang, 2021. "Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method," Energy, Elsevier, vol. 230(C).
    8. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    9. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    10. Schito, Eva & Conti, Paolo & Testi, Daniele, 2018. "Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors’ discomfort and artwork preservation risks," Applied Energy, Elsevier, vol. 224(C), pages 147-159.
    11. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    12. Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
    13. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    14. Zhou, Dongdong & Cheng, Shusen, 2019. "Measurement study of the PCI process on the temperature distribution in raceway zone of blast furnace by using digital imaging techniques," Energy, Elsevier, vol. 174(C), pages 814-822.
    15. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Casas-Ledón, Yannay, 2022. "GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile," Renewable Energy, Elsevier, vol. 182(C), pages 363-376.
    16. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    17. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
    18. Ning Wang & Weisheng Xu & Weihui Shao & Zhiyu Xu, 2019. "A Q-Cube Framework of Reinforcement Learning Algorithm for Continuous Double Auction among Microgrids," Energies, MDPI, vol. 12(15), pages 1-26, July.
    19. González-Cencerrado, A. & Peña, B. & Gil, A., 2012. "Coal flame characterization by means of digital image processing in a semi-industrial scale PF swirl burner," Applied Energy, Elsevier, vol. 94(C), pages 375-384.
    20. Hou, Jiazuo & Hu, Chenxi & Lei, Shunbo & Hou, Yunhe, 2024. "Cyber resilience of power electronics-enabled power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.