IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1282-d1046257.html
   My bibliography  Save this article

Analysis of the Electric Vehicle Charging Stations Effects on the Electricity Network with Artificial Neural Network

Author

Listed:
  • Kadir Olcay

    (Dumlupınar Vocational School, Kutahya Dumlupınar University, 43820 Kutahya, Turkey)

  • Nurettin Çetinkaya

    (Department of Electrical and Electronics Engineering, Konya Technical University, 42250 Konya, Turkey)

Abstract

In this study, the effects of electric vehicles, whose usage rate is increasing day by day in the world, on the existing electricity grid have been studied. EV charging stations and similar non-linear loads cause various harmful effects on power systems such as phase imbalances, the effect of harmonic formation, energy quality, voltage, and current imbalance. The study focuses on the harmonic effects of EV charging stations at the point where they are connected to the grid and at lower voltage levels by using IEEE 6-, 14-bus, and 30-bus test power systems. In addition to the existing loads in these grid systems, the effects on the grid as a result of drawing electrical energy from the grid for charging electric vehicles are investigated. These effects have shown how these charging stations on the grid have changed, considering the fact that the number of electric vehicles and the number of charging stations increased over the years when a single electric vehicle provided energy from the grid, and the grid was not renewed. The response of the network to the increase in the load that will occur in addition to the current loads, its harmonic effects, and the effects of the current grid on the increase in the electric vehicle growth rate over the years have been predicted and examined by using artificial neural networks. Solution suggestions are presented for power networks in similar situations.

Suggested Citation

  • Kadir Olcay & Nurettin Çetinkaya, 2023. "Analysis of the Electric Vehicle Charging Stations Effects on the Electricity Network with Artificial Neural Network," Energies, MDPI, vol. 16(3), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1282-:d:1046257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hadley, Stanton W. & Tsvetkova, Alexandra A., 2009. "Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation," The Electricity Journal, Elsevier, vol. 22(10), pages 56-68, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Terkes, Musa & Arikan, Oktay & Gokalp, Erdin, 2024. "The effect of electric vehicle charging demand variability on optimal hybrid power systems with second-life lithium-ion or fresh Na–S batteries considering power quality," Energy, Elsevier, vol. 288(C).
    2. Sharmistha Nandi & Sriparna Roy Ghatak & Parimal Acharjee & Fernando Lopes, 2023. "Non-Iterative, Unique, and Logical Formula-Based Technique to Determine Maximum Load Multiplier and Practical Load Multiplier for Both Transmission and Distribution Systems," Energies, MDPI, vol. 16(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    2. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    3. Xiaohua Zhang & Jun Xie & Zhengwei Zhu & Jianfeng Zheng & Hao Qiang & Hailong Rong, 2016. "Smart Grid Cost-Emission Unit Commitment via Co-Evolutionary Agents," Energies, MDPI, vol. 9(10), pages 1-13, October.
    4. Talaei, A. & Begg, K. & Jamasb, T., 2012. "The Large Scale Roll-Out of Electric Vehicles: The Effect on the Electricity Sector and CO2 Emissions," Cambridge Working Papers in Economics 1246, Faculty of Economics, University of Cambridge.
    5. Irfan, Muhammad & Iqbal, Jamshed & Iqbal, Adeel & Iqbal, Zahid & Riaz, Raja Ali & Mehmood, Adeel, 2017. "Opportunities and challenges in control of smart grids – Pakistani perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 652-674.
    6. Xiao, Jingjie, 2013. "Grid integration and smart grid implementation of emerging technologies in electric power systems through approximate dynamic programming," MPRA Paper 58696, University Library of Munich, Germany.
    7. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Yang, Shengjie & Yao, Jiangang & Kang, Tong & Zhu, Xiangqian, 2014. "Dynamic operation model of the battery swapping station for EV (electric vehicle) in electricity market," Energy, Elsevier, vol. 65(C), pages 544-549.
    9. Axsen, Jonn & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2011. "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model," Energy Policy, Elsevier, vol. 39(3), pages 1617-1629, March.
    10. Azhar Ul-Haq & Marium Azhar & Yousef Mahmoud & Aqib Perwaiz & Essam A. Al-Ammar, 2017. "Probabilistic Modeling of Electric Vehicle Charging Pattern Associated with Residential Load for Voltage Unbalance Assessment," Energies, MDPI, vol. 10(9), pages 1-18, September.
    11. S Satheesh Kumar & B Ashok Kumar & S Senthilrani, 2024. "Review of electric vehicle (EV) charging using renewable solar photovoltaic (PV) nano grid," Energy & Environment, , vol. 35(2), pages 1089-1117, March.
    12. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    13. Wilkerson, Jordan & Larsen, Peter & Barbose, Galen, 2014. "Survey of Western U.S. electric utility resource plans," Energy Policy, Elsevier, vol. 66(C), pages 90-103.
    14. Paget, Mia & Seacrest, Tom & Widergren, Steve & Balducci, Patrick & Orrell, Alice & Bloyd, Cary, 2011. "Using Smart Grids to Enhance Use of Energy-Efficiency and Renewable-Energy Technologies," MPRA Paper 58391, University Library of Munich, Germany.
    15. Wang, Jianhui & Liu, Cong & Ton, Dan & Zhou, Yan & Kim, Jinho & Vyas, Anantray, 2011. "Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power," Energy Policy, Elsevier, vol. 39(7), pages 4016-4021, July.
    16. Wei Gu & Haojun Yu & Wei Liu & Junpeng Zhu & Xiaohui Xu, 2013. "Demand Response and Economic Dispatch of Power Systems Considering Large-Scale Plug-in Hybrid Electric Vehicles/Electric Vehicles (PHEVs/EVs): A Review," Energies, MDPI, vol. 6(9), pages 1-24, August.
    17. Onat, Nuri C. & Noori, Mehdi & Kucukvar, Murat & Zhao, Yang & Tatari, Omer & Chester, Mikhail, 2017. "Exploring the suitability of electric vehicles in the United States," Energy, Elsevier, vol. 121(C), pages 631-642.
    18. Maximilian J. Zangs & Peter B. E. Adams & Timur Yunusov & William Holderbaum & Ben A. Potter, 2016. "Distributed Energy Storage Control for Dynamic Load Impact Mitigation," Energies, MDPI, vol. 9(8), pages 1-20, August.
    19. Nurre, Sarah G. & Bent, Russell & Pan, Feng & Sharkey, Thomas C., 2014. "Managing operations of plug-in hybrid electric vehicle (PHEV) exchange stations for use with a smart grid," Energy Policy, Elsevier, vol. 67(C), pages 364-377.
    20. Göransson, Lisa & Karlsson, Sten & Johnsson, Filip, 2010. "Integration of plug-in hybrid electric vehicles in a regional wind-thermal power system," Energy Policy, Elsevier, vol. 38(10), pages 5482-5492, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1282-:d:1046257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.