IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.01319.html
   My bibliography  Save this paper

CAD: Clustering And Deep Reinforcement Learning Based Multi-Period Portfolio Management Strategy

Author

Listed:
  • Zhengyong Jiang
  • Jeyan Thiayagalingam
  • Jionglong Su
  • Jinjun Liang

Abstract

In this paper, we present a novel trading strategy that integrates reinforcement learning methods with clustering techniques for portfolio management in multi-period trading. Specifically, we leverage the clustering method to categorize stocks into various clusters based on their financial indices. Subsequently, we utilize the algorithm Asynchronous Advantage Actor-Critic to determine the trading actions for stocks within each cluster. Finally, we employ the algorithm DDPG to generate the portfolio weight vector, which decides the amount of stocks to buy, sell, or hold according to the trading actions of different clusters. To the best of our knowledge, our approach is the first to combine clustering methods and reinforcement learning methods for portfolio management in the context of multi-period trading. Our proposed strategy is evaluated using a series of back-tests on four datasets, comprising a of 800 stocks, obtained from the Shanghai Stock Exchange and National Association of Securities Deal Automated Quotations sources. Our results demonstrate that our approach outperforms conventional portfolio management techniques, such as the Robust Median Reversion strategy, Passive Aggressive Median Reversion Strategy, and several machine learning methods, across various metrics. In our back-test experiments, our proposed strategy yields an average return of 151% over 360 trading periods with 800 stocks, compared to the highest return of 124% achieved by other techniques over identical trading periods and stocks.

Suggested Citation

  • Zhengyong Jiang & Jeyan Thiayagalingam & Jionglong Su & Jinjun Liang, 2023. "CAD: Clustering And Deep Reinforcement Learning Based Multi-Period Portfolio Management Strategy," Papers 2310.01319, arXiv.org.
  • Handle: RePEc:arx:papers:2310.01319
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.01319
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pauli Murto & Marko Terviö, 2014. "Exit Options And Dividend Policy Under Liquidity Constraints," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(1), pages 197-221, February.
    2. Mee Young Park & Trevor Hastie, 2007. "L1‐regularization path algorithm for generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 659-677, September.
    3. James B. Heaton & Nicholas Polson & Jan H. Witte, 2017. "Rejoinder to ‘Deep learning for finance: deep portfolios’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 19-21, January.
    4. Paskalis Glabadanidis, 2015. "Market Timing With Moving Averages," International Review of Finance, International Review of Finance Ltd., vol. 15(3), pages 387-425, September.
    5. Ruoxuan Xiong & Eric P. Nichols & Yuan Shen, 2015. "Deep Learning Stock Volatility with Google Domestic Trends," Papers 1512.04916, arXiv.org, revised Feb 2016.
    6. A. Borodin & R. El-Yaniv & V. Gogan, 2011. "Can We Learn to Beat the Best Stock," Papers 1107.0036, arXiv.org.
    7. Pauli Murto & Marko Terviö, 2014. "Exit Options And Dividend Policy Under Liquidity Constraints," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 197-221, February.
    8. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    9. Ziming Gao & Yuan Gao & Yi Hu & Zhengyong Jiang & Jionglong Su, 2020. "Application of Deep Q-Network in Portfolio Management," Papers 2003.06365, arXiv.org.
    10. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    11. Paskalis Glabadanidis, 2015. "Market Timing and Moving Averages," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-137-35983-4, October.
    12. J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
    13. Bikker, Jacob A. & Spierdijk, Laura & van der Sluis, Pieter Jelle, 2007. "Market impact costs of institutional equity trades," Journal of International Money and Finance, Elsevier, vol. 26(6), pages 974-1000, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitor Azevedo & Christopher Hoegner, 2023. "Enhancing stock market anomalies with machine learning," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 195-230, January.
    2. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    3. Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    4. Wenbo Wu & Jiaqi Chen & Zhibin (Ben) Yang & Michael L. Tindall, 2021. "A Cross-Sectional Machine Learning Approach for Hedge Fund Return Prediction and Selection," Management Science, INFORMS, vol. 67(7), pages 4577-4601, July.
    5. Huh, Jeonggyu, 2020. "Measuring systematic risk with neural network factor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    6. Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & Franc{c}ois Chareyron, 2021. "Adaptive learning for financial markets mixing model-based and model-free RL for volatility targeting," Papers 2104.10483, arXiv.org, revised Apr 2021.
    7. Jeonggyu Huh, 2018. "Measuring Systematic Risk with Neural Network Factor Model," Papers 1809.04925, arXiv.org.
    8. Décamps, Jean-Paul & Villeneuve, Stéphane, 2022. "Learning about profitability and dynamic cash management," Journal of Economic Theory, Elsevier, vol. 205(C).
    9. Tang, Xuli & Li, Xin & Ding, Ying & Song, Min & Bu, Yi, 2020. "The pace of artificial intelligence innovations: Speed, talent, and trial-and-error," Journal of Informetrics, Elsevier, vol. 14(4).
    10. Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    11. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    12. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    13. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    14. Yafeng Qin & Guoyao Pan & Min Bai, 2020. "Improving market timing of time series momentum in the Chinese stock market," Applied Economics, Taylor & Francis Journals, vol. 52(43), pages 4711-4725, September.
    15. Jiang, Kangqi & Du, Xinyi & Chen, Zhongfei, 2022. "Firms' digitalization and stock price crash risk," International Review of Financial Analysis, Elsevier, vol. 82(C).
    16. Panda, Saunak Kumar & Xiang, Yisha & Liu, Ruiqi, 2024. "Dynamic resource matching in manufacturing using deep reinforcement learning," European Journal of Operational Research, Elsevier, vol. 318(2), pages 408-423.
    17. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    18. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    19. Qiong Wu & Christopher G. Brinton & Zheng Zhang & Andrea Pizzoferrato & Zhenming Liu & Mihai Cucuringu, 2019. "Equity2Vec: End-to-end Deep Learning Framework for Cross-sectional Asset Pricing," Papers 1909.04497, arXiv.org, revised Oct 2021.
    20. Axelsson, Birger & Song, Han-Suck, 2023. "Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model," Working Paper Series 23/10, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance, revised 14 Nov 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.01319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.