Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- repec:cup:cbooks:9781108422536 is not listed on IDEAS
- Helmut Lütkepohl & Fang Xu, 2012.
"The role of the log transformation in forecasting economic variables,"
Empirical Economics, Springer, vol. 42(3), pages 619-638, June.
- Helmut Lütkepohl & Fang Xu, 2009. "The Role of the Log Transformation in Forecasting Economic Variables," CESifo Working Paper Series 2591, CESifo.
- Cao, Jian & Li, Zhi & Li, Jian, 2019. "Financial time series forecasting model based on CEEMDAN and LSTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 127-139.
- Robert T. Kleiman & James E. Payne & Anandi P. Sahu, 2002.
"Random Walks and Market Efficiency: Evidence from International Real Estate Markets,"
Journal of Real Estate Research, American Real Estate Society, vol. 24(3), pages 279-298.
- Robert Kleiman & James Payne & Anandi Sahu, 2002. "Random Walks and Market Efficiency: Evidence from International Real Estate Markets," Journal of Real Estate Research, Taylor & Francis Journals, vol. 24(3), pages 279-298, January.
- Ming-Long Lee & Kevin C.H. Chiang, 2004. "Substitutability between Equity REITs and Mortgage REITs," Journal of Real Estate Research, American Real Estate Society, vol. 26(1), pages 95-114.
- Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
- Simon Stevenson, 2002. "Momentum Effects and Mean Reversion in Real Estate Securities," Journal of Real Estate Research, American Real Estate Society, vol. 23(1/2), pages 47-64.
- Su, Jen-Je & Cheung, Adrian (Wai-Kong) & Roca, Eduardo, 2012. "Are securitised real estate markets efficient?," Economic Modelling, Elsevier, vol. 29(3), pages 684-690.
- Brooks,Chris, 2019. "Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9781108436823, January.
- E. Hui & J. Wright & S. Yam, 2014. "Calendar Effects and Real Estate Securities," The Journal of Real Estate Finance and Economics, Springer, vol. 49(1), pages 91-115, July.
- Klaus Grobys & James W. Kolari & Joachim Niang, 2022. "Man versus machine: on artificial intelligence and hedge funds performance," Applied Economics, Taylor & Francis Journals, vol. 54(40), pages 4632-4646, August.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- James B. Heaton & Nicholas Polson & Jan H. Witte, 2017. "Rejoinder to ‘Deep learning for finance: deep portfolios’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 19-21, January.
- Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
- J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
- Kyriakou, Maria I. & Babalos, Vassilios & Kiohos, Apostolos & Koulakiotis, Athanasios, 2020. "Feedback trading strategies and long-term volatility," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 181-189.
- Geoffrey M. Ngene & Catherine Anitha Manohar & Ivan F. Julio, 2020. "Overreaction in the REITs Market: New Evidence from Quantile Autoregression Approach," JRFM, MDPI, vol. 13(11), pages 1-28, November.
- Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Felix Schindler, 2014. "Persistence and Predictability in UK House Price Movements," The Journal of Real Estate Finance and Economics, Springer, vol. 48(1), pages 132-163, January.
- Felix Schindler, 2013. "Predictability and Persistence of the Price Movements of the S&P/Case-Shiller House Price Indices," The Journal of Real Estate Finance and Economics, Springer, vol. 46(1), pages 44-90, January.
- Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
- Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
- Oluwasegun B. Adekoya & Gabriel O. Oduyemi & Johnson A. Oliyide, 2021. "Price and volatility persistence of the US REITs market," Future Business Journal, Springer, vol. 7(1), pages 1-10, December.
- Sang Il Lee & Seong Joon Yoo, 2019. "Multimodal Deep Learning for Finance: Integrating and Forecasting International Stock Markets," Papers 1903.06478, arXiv.org, revised Sep 2019.
- Ben Moews & Gbenga Ibikunle, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Papers 2002.10385, arXiv.org.
- Li, Weiping & Mei, Feng, 2020. "Asset returns in deep learning methods: An empirical analysis on SSE 50 and CSI 300," Research in International Business and Finance, Elsevier, vol. 54(C).
- Evangelos Vasileiou, 2022. "Inaccurate Value at Risk Estimations: Bad Modeling or Inappropriate Data?," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1155-1171, March.
- Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
- Vitor Azevedo & Christopher Hoegner, 2023. "Enhancing stock market anomalies with machine learning," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 195-230, January.
- Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
- Tang, Xuli & Li, Xin & Ding, Ying & Song, Min & Bu, Yi, 2020. "The pace of artificial intelligence innovations: Speed, talent, and trial-and-error," Journal of Informetrics, Elsevier, vol. 14(4).
- Akarim, Yasemin Deniz & Sevim, Serafettin, 2013. "The impact of mean reversion model on portfolio investment strategies: Empirical evidence from emerging markets," Economic Modelling, Elsevier, vol. 31(C), pages 453-459.
- Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
- Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
More about this item
Keywords
Forecasting; Equity REITs; deep learning; LSTM; ARIMA;All these keywords.
JEL classification:
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- G19 - Financial Economics - - General Financial Markets - - - Other
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-10-23 (Big Data)
- NEP-CMP-2023-10-23 (Computational Economics)
- NEP-FOR-2023-10-23 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:kthrec:2023_010. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cecilia Hermansson (email available below). General contact details of provider: https://edirc.repec.org/data/ifkthse.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.