Sector-level equity returns predictability with machine learning and market contagion measure
Author
Abstract
Suggested Citation
DOI: 10.1007/s00181-023-02404-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Todd E. Clark & Michael W. McCracken, 2009.
"Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, May.
- Todd E. Clark & Michael W. McCracken, 2004. "Improving forecast accuracy by combining recursive and rolling forecasts," Research Working Paper RWP 04-10, Federal Reserve Bank of Kansas City.
- Todd E. Clark & Michael W. McCracken, 2008. "Improving forecast accuracy by combining recursive and rolling forecasts," Working Papers 2008-028, Federal Reserve Bank of St. Louis.
- Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020.
"Taming the Factor Zoo: A Test of New Factors,"
Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
- Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2019. "Taming the Factor Zoo: A Test of New Factors," NBER Working Papers 25481, National Bureau of Economic Research, Inc.
- Giglio, Stefano & Feng, Guanhao & Xiu, Dacheng, 2020. "Taming the Factor Zoo: A Test of New Factors," CEPR Discussion Papers 14266, C.E.P.R. Discussion Papers.
- Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994.
"A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks,"
Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
- James M. Hutchinson & Andrew W. Lo & Tomaso Poggio, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks," NBER Working Papers 4718, National Bureau of Economic Research, Inc.
- Andrew Ang & Geert Bekaert, 2007.
"Stock Return Predictability: Is it There?,"
The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
- Andrew Ang & Geert Bekaert, 2001. "Stock Return Predictability: Is it There?," NBER Working Papers 8207, National Bureau of Economic Research, Inc.
- Weijia Peng & Chun Yao, 2022. "Co-Jumps, Co-Jump Tests, and Volatility Forecasting: Monte Carlo and Empirical Evidence," JRFM, MDPI, vol. 15(8), pages 1-21, July.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Peter F. Christoffersen & Francis X. Diebold, 2006.
"Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics,"
Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
- Christoffersen, Peter F. & Diebold, Francis X., 2003. "Financial asset returns, direction-of-change forecasting, and volatility dynamics," CFS Working Paper Series 2004/08, Center for Financial Studies (CFS).
- Peter F. Christoffersen & Francis X. Diebold, 2003. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," NBER Working Papers 10009, National Bureau of Economic Research, Inc.
- Peter F. Christoffersen & Francis X.Diebold, 2003. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," PIER Working Paper Archive 04-009, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Ferreira, Miguel A. & Santa-Clara, Pedro, 2011.
"Forecasting stock market returns: The sum of the parts is more than the whole,"
Journal of Financial Economics, Elsevier, vol. 100(3), pages 514-537, June.
- Miguel A. Ferreira & Pedro Santa-Clara, 2008. "Forecasting Stock Market Returns: The Sum of the Parts is More than the Whole," NBER Working Papers 14571, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022.
"Scaled PCA: A New Approach to Dimension Reduction,"
Management Science, INFORMS, vol. 68(3), pages 1678-1695, March.
- Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022. "Scaled PCA: A New Approach to Dimension Reduction," CEMA Working Papers 678, China Economics and Management Academy, Central University of Finance and Economics.
- Norman R. Swanson & Halbert White, 1997.
"A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks,"
The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
- Norman R. Swanson & Halbert White, 1995. "A Model Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Macroeconomics 9503004, University Library of Munich, Germany.
- Swanson, N.R. & White, H., 1995. "A Models Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Papers 04-95-12, Pennsylvania State - Department of Economics.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- John H. Cochrane, 2008.
"The Dog That Did Not Bark: A Defense of Return Predictability,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
- John H. Cochrane, 2006. "The Dog That Did Not Bark: A Defense of Return Predictability," NBER Working Papers 12026, National Bureau of Economic Research, Inc.
- Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
- Aït-Sahalia, Yacine & Xiu, Dacheng, 2016. "Increased correlation among asset classes: Are volatility or jumps to blame, or both?," Journal of Econometrics, Elsevier, vol. 194(2), pages 205-219.
- Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
- Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
- James B. Heaton & Nicholas Polson & Jan H. Witte, 2017. "Rejoinder to ‘Deep learning for finance: deep portfolios’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 19-21, January.
- J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
- Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992.
"Simple Technical Trading Rules and the Stochastic Properties of Stock Returns,"
Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
- Brock, W. & Lakonishok, J. & Lebaron, B., 1991. "Simple Technical Trading Rules And The Stochastic Properties Of Stock Returns," Working papers 90-22, Wisconsin Madison - Social Systems.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
- Mykola Babiak & Jozef Barunik, 2020.
"Deep Learning, Predictability, and Optimal Portfolio Returns,"
CERGE-EI Working Papers
wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," Papers 2009.03394, arXiv.org, revised Jul 2021.
- Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
- James Yae & Yang Luo, 2023. "Robust monitoring machine: a machine learning solution for out-of-sample R $$^2$$ 2 -hacking in return predictability monitoring," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.
- Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Charles, Amelie & Darne, Olivier & Kim, Jae, 2016.
"Stock Return Predictability: Evaluation based on Prediction Intervals,"
MPRA Paper
70143, University Library of Munich, Germany.
- Amélie Charles & Olivier Darné & Jae H. Kim, 2016. "Stock Return Predictability: Evaluation based on prediction intervals," Working Papers hal-01295037, HAL.
- Gonçalo Faria & Fabio Verona, 2016.
"Forecasting the equity risk premium with frequency-decomposed predictors,"
Working Papers de Economia (Economics Working Papers)
06, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2017. "Forecasting the equity risk premium with frequency-decomposed predictors," Bank of Finland Research Discussion Papers 1/2017, Bank of Finland.
- , & Stein, Tobias, 2021.
"Equity premium predictability over the business cycle,"
CEPR Discussion Papers
16357, C.E.P.R. Discussion Papers.
- Mönch, Emanuel & Stein, Tobias, 2021. "Equity premium predictability over the business cycle," Discussion Papers 25/2021, Deutsche Bundesbank.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
- Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
- Charles, Amélie & Darné, Olivier & Kim, Jae H., 2017.
"International stock return predictability: Evidence from new statistical tests,"
International Review of Financial Analysis, Elsevier, vol. 54(C), pages 97-113.
- Amélie Charles & Olivier Darné & Jae H Kim, 2017. "International Stock Return Predictability: Evidence from New Statistical Tests," Post-Print hal-01626101, HAL.
- Baetje, Fabian & Menkhoff, Lukas, 2016.
"Equity premium prediction: Are economic and technical indicators unstable?,"
International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
- Baetje, Fabian & Menkhoff, Lukas, 2015. "Equity premium prediction: Are economic and technical indicators instable?," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113079, Verein für Socialpolitik / German Economic Association.
- Baetje, Fabian & Menkhoff, Lukas, 2015. "Equity premium prediction: Are economic and technical indicators instable?," Kiel Working Papers 1987, Kiel Institute for the World Economy (IfW Kiel).
- Fabian Baetje & Lukas Menkhoff, 2016. "Equity Premium Prediction: Are Economic and Technical Indicators Unstable?," Discussion Papers of DIW Berlin 1552, DIW Berlin, German Institute for Economic Research.
- Amélie Charles & Olivier Darné & Jae H. Kim, 2022.
"Stock return predictability: Evaluation based on interval forecasts,"
Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 363-385, April.
- Amélie Charles & Olivier Darné & Jae Kim, 2022. "Stock Return Predictability: Evaluation based on interval forecasts," Post-Print hal-03656310, HAL.
- Gonçalo Faria & Fabio Verona, 2016.
"Forecasting the equity risk premium with frequency-decomposed predictors,"
Working Papers de Economia (Economics Working Papers)
06, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2017. "Forecasting the equity risk premium with frequency-decomposed predictors," Research Discussion Papers 1/2017, Bank of Finland.
- Faria, Gonçalo & Verona, Fabio, 2018.
"Forecasting stock market returns by summing the frequency-decomposed parts,"
Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
- Gonçalo Faria & Fabio Verona, 2016. "Forecasting stock market returns by summing the frequency-decomposed parts," Working Papers de Economia (Economics Working Papers) 05, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2016. "Forecasting stock market returns by summing the frequency-decomposed parts," Research Discussion Papers 29/2016, Bank of Finland.
- Gonçalo Faria & Fabio Verona, 2017. "Forecasting stock market returns by summing the frequency-decomposed parts," CEF.UP Working Papers 1702, Universidade do Porto, Faculdade de Economia do Porto.
- repec:zbw:bofrdp:2016_029 is not listed on IDEAS
- David I. Harvey & Stephen J. Leybourne & Robert Sollis & A.M. Robert Taylor, 2021.
"Real‐time detection of regimes of predictability in the US equity premium,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 45-70, January.
- Harvey, David I & Leybourne, Stephen J & Sollis, Robert & Taylor, AM Robert, 2020. "Real-Time Detection of Regimes of Predictability in the U.S. Equity Premium," Essex Finance Centre Working Papers 27775, University of Essex, Essex Business School.
- Faria, Gonçalo & Verona, Fabio, 2018.
"Forecasting stock market returns by summing the frequency-decomposed parts,"
Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
- Gonçalo Faria & Fabio Verona, 2016. "Forecasting stock market returns by summing the frequency-decomposed parts," Working Papers de Economia (Economics Working Papers) 05, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2016. "Forecasting stock market returns by summing the frequency-decomposed parts," Bank of Finland Research Discussion Papers 29/2016, Bank of Finland.
- Gonçalo Faria & Fabio Verona, 2017. "Forecasting stock market returns by summing the frequency-decomposed parts," CEF.UP Working Papers 1702, Universidade do Porto, Faculdade de Economia do Porto.
More about this item
Keywords
Equity return predictability; Machine learning models; Latent risk measures; Hybrid model;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:65:y:2023:i:4:d:10.1007_s00181-023-02404-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.