IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v208y2023icp618-626.html
   My bibliography  Save this article

Effects of volatiles and active AAEMs interaction with char on char characteristics during co-pyrolysis

Author

Listed:
  • Jiao, Zixin
  • Qiu, Penghua
  • Chen, Xiye
  • Liu, Li
  • Zhang, Linyao
  • Xing, Chang

Abstract

The interactions between volatile substances (volatiles and volatile alkali and alkaline earth metals) released from pyrolysis and char have a crucial influence on the co-gasification process. The influence mechanism of volatiles-char interaction and volatile substances-char interaction in the co-pyrolysis of coal (RSM) and corn stover (RCS) was studied. The findings indicated that volatiles-char interaction suppressed the progression of specific surface area (SSA) and pore structures of char. Volatile active alkali and alkaline earth metals (Ac-AAEMs) of RCS/RSM attenuated the unfavorable effects of volatiles and facilitated the progression of pore structures and SSA of coal/RCS char. Besides, volatiles could react with char through small aromatic ring structures and oxygen-containing groups. The presence of volatile Ac-AAEMs could inhibit the depletion of small aromatic ring structures and oxygen-containing groups caused by volatiles-char interaction. Among them, RCS volatile Ac-AAEMs suppressed the consumption of 11% oxygen-containing groups. RSM volatile Ac-AAEMs inhibited the depletion of 4% oxygen-containing groups. Finally, RCS volatiles-char interaction could inhibit the reactivity of RSM char. The existence of RCS volatile Ac-AAEMs could alleviate the inhibition of volatiles and significantly promote the reactivity of RSM char. Nevertheless, the volatiles and volatile Ac-AAEMs from RSM exhibited minor impacts on RCS char reactivity.

Suggested Citation

  • Jiao, Zixin & Qiu, Penghua & Chen, Xiye & Liu, Li & Zhang, Linyao & Xing, Chang, 2023. "Effects of volatiles and active AAEMs interaction with char on char characteristics during co-pyrolysis," Renewable Energy, Elsevier, vol. 208(C), pages 618-626.
  • Handle: RePEc:eee:renene:v:208:y:2023:i:c:p:618-626
    DOI: 10.1016/j.renene.2023.03.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123003920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Meng & Wang, Jiaofei & Bai, Yonghui & Lv, Peng & Song, Xudong & Su, Weiguang & Wei, Juntao & Yu, Guangsuo, 2022. "Decoupling of volatile–char interaction in co-pyrolysis of cow manure and bituminous coal and deactivation mechanism of coal char reactivity," Energy, Elsevier, vol. 251(C).
    2. Li, Qingyin & Lin, Haisheng & Fan, Huailin & Zhang, Shu & Yuan, Xiangzhou & Wang, Yi & Xiang, Jun & Hu, Song & Bkangmo Kontchouo, Félix Mérimé & Hu, Xun, 2021. "Co-pyrolysis of swine manure and pinewood sawdust: Evidence of cross-interaction of the volatiles and profound impacts on product characteristics," Renewable Energy, Elsevier, vol. 179(C), pages 1370-1384.
    3. Chen, Xiye & Liu, Li & Zhang, Linyao & Zhao, Yan & Xing, Chang & Jiao, Zixin & Yang, Chunhui & Qiu, Penghua, 2021. "Effect of active alkali and alkaline earth metals on physicochemical properties and gasification reactivity of co-pyrolysis char from coal blended with corn stalks," Renewable Energy, Elsevier, vol. 171(C), pages 1213-1223.
    4. Wu, Zhiqiang & Zhang, Jie & Zhang, Bo & Guo, Wei & Yang, Guidong & Yang, Bolun, 2020. "Synergistic effects from co-pyrolysis of lignocellulosic biomass main component with low-rank coal: Online and offline analysis on products distribution and kinetic characteristics," Applied Energy, Elsevier, vol. 276(C).
    5. Li, Bin & Zhao, Lijun & Xie, Xing & Lin, Dan & Xu, Huibin & Wang, Shuang & Xu, Zhixiang & Wang, Junfeng & Huang, Yong & Zhang, Shu & Hu, Xun & Liu, Dongjing, 2021. "Volatile-char interactions during biomass pyrolysis: Effect of char preparation temperature," Energy, Elsevier, vol. 215(PB).
    6. Wei, Juntao & Gong, Yan & Guo, Qinghua & Chen, Xueli & Ding, Lu & Yu, Guangsuo, 2019. "A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals," Renewable Energy, Elsevier, vol. 131(C), pages 597-605.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Junfeng & Zhou, Wei & Huang, Yuming & Zhao, Yang & Li, Xuhan & Xue, Naiyuan & Qu, Zhibin & Tang, Zhipei & Xie, Liang & Li, Jingyu & Liu, Zheyu & Fang, Yitian & Pi, Xinxin & Meng, Xiaoxiao & Zhao, , 2024. "Rapid preparation strategy of highly microporous activated carbons for gas adsorption, via tunable-energy-density microwave heating," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Meng & Wang, Jiaofei & Bai, Yonghui & Lv, Peng & Song, Xudong & Su, Weiguang & Wei, Juntao & Yu, Guangsuo, 2022. "Decoupling of volatile–char interaction in co-pyrolysis of cow manure and bituminous coal and deactivation mechanism of coal char reactivity," Energy, Elsevier, vol. 251(C).
    2. Kuang, Yucen & Jiang, Tao & Wu, Longqi & Liu, Xiaoqian & Yang, Xuke & Sher, Farooq & Wei, Zhifang & Zhang, Shengfu, 2023. "High-temperature rheological behavior and non-isothermal pyrolysis mechanism of macerals separated from different coals," Energy, Elsevier, vol. 277(C).
    3. Yajing He & Shihong Zhang & Dongjing Liu & Xing Xie & Bin Li, 2023. "Effect of Biomass Particle Size on the Torrefaction Characteristics in a Fixed-Bed Reactor," Energies, MDPI, vol. 16(3), pages 1-14, January.
    4. Moon, Hyeong-Bin & Lee, Ji-Hwan & Kim, Hyung-Tae & Lee, Jin-Wook & Lee, Byoung-Hwa & Jeon, Chung-Hwan, 2024. "Effect of high-pressure pyrolysis on syngas and char structure of petroleum coke," Energy, Elsevier, vol. 299(C).
    5. Magoua Mbeugang, Christian Fabrice & Li, Bin & Lin, Dan & Xie, Xing & Wang, Shuaijun & Wang, Shuang & Zhang, Shu & Huang, Yong & Liu, Dongjing & Wang, Qian, 2021. "Hydrogen rich syngas production from sorption enhanced gasification of cellulose in the presence of calcium oxide," Energy, Elsevier, vol. 228(C).
    6. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    7. Wei, Juntao & Guo, Qinghua & Gong, Yan & Ding, Lu & Yu, Guangsuo, 2020. "Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification," Renewable Energy, Elsevier, vol. 155(C), pages 111-120.
    8. Yang, Tianhua & Du, Chongzhen & Li, Bingshuo & Liu, Zheng & Kai, Xingping, 2022. "Influence of alkali and alkaline earth metals on the hydrothermal liquefaction of lignocellulosic model compounds," Renewable Energy, Elsevier, vol. 188(C), pages 1038-1048.
    9. Leng, Lijian & Li, Tanghao & Zhan, Hao & Rizwan, Muhammad & Zhang, Weijin & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2023. "Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass," Energy, Elsevier, vol. 278(PB).
    10. Chen, Xiye & Liu, Li & Zhang, Linyao & Zhao, Yan & Xing, Chang & Jiao, Zixin & Yang, Chunhui & Qiu, Penghua, 2021. "Effect of active alkali and alkaline earth metals on physicochemical properties and gasification reactivity of co-pyrolysis char from coal blended with corn stalks," Renewable Energy, Elsevier, vol. 171(C), pages 1213-1223.
    11. Śpiewak, Katarzyna & Czerski, Grzegorz & Soprych, Piotr, 2023. "Steam gasification of tire char supported by catalysts based on biomass ashes," Energy, Elsevier, vol. 285(C).
    12. Hernández, J.J. & Saffe, A. & Collado, R. & Monedero, E., 2020. "Recirculation of char from biomass gasification: Effects on gasifier performance and end-char properties," Renewable Energy, Elsevier, vol. 147(P1), pages 806-813.
    13. Yang, Dongtai & Li, Sheng & He, Song, 2024. "Zero/negative carbon emission coal and biomass staged co-gasification power generation system via biomass heating," Applied Energy, Elsevier, vol. 357(C).
    14. Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).
    15. Biao Wang & Na Liu & Shanshan Wang & Xiaoxian Li & Rui Li & Yulong Wu, 2023. "Study on Co-Pyrolysis of Coal and Biomass and Process Simulation Optimization," Sustainability, MDPI, vol. 15(21), pages 1-16, October.
    16. Zhi Xu & Zhaohui Guo & Huimin Xie & Yulian Hu, 2022. "Effect of Cd on Pyrolysis Velocity and Deoxygenation Characteristics of Rice Straw: Analogized with Cd-Impregnated Representative Biomass Components," IJERPH, MDPI, vol. 19(15), pages 1-18, July.
    17. Aboelazayem, Omar & Gadalla, Mamdouh & Alhajri, Ibrahim & Saha, Basudeb, 2021. "Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery via organic Rankine cycle (ORC)," Renewable Energy, Elsevier, vol. 164(C), pages 433-443.
    18. Li, Chao & Jiang, Yuchen & Shao, Yuewen & Gao, Guoming & Fan, Mengjiao & Zhang, Lijun & Zhang, Shu & Xiang, Jun & Hu, Song & Wang, Yi & Hu, Xun, 2024. "Quantification of degree of interactions during co-pyrolysis of nine typical carbonaceous wastes," Renewable Energy, Elsevier, vol. 227(C).
    19. Kenji Koido & Kenji Endo & Hidetsugu Morimoto & Hironori Ohashi & Michio Sato, 2024. "Synergistic Effects in Co-Gasification of Willow and Cedar Blended Char in CO 2 Media," Energies, MDPI, vol. 17(16), pages 1-16, August.
    20. Muniyappan, Dineshkumar & Pereira Junior, Amaro Olimpio & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2023. "Synergistic recovery of renewable hydrocarbon resources via microwave co-pyrolysis of biomass residue and plastic waste over spent toner catalyst towards sustainable solid waste management," Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:208:y:2023:i:c:p:618-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.