IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v112y2016icp1245-1258.html
   My bibliography  Save this article

International experiences with the cultivation of Jatropha curcas for biodiesel production

Author

Listed:
  • Castro Gonzáles, Nirza Fabiola

Abstract

This paper is the first of its kind, providing an identification of the problems encountered in all documented global experiences of cultivating the Jatropha curcas plant, covering 22 case studies. Influential components of the biodiesel production (stakeholders like government, farmers and enterprises as well as resources such as land and water) and how they are interconnected are pinpointed. In addition, the article gives recommendations to the main actors under ecological and socio-economic criteria to ensure a sustainable production of J. curcas oil in regions with appropriate climatic conditions for the plant's viability. Hence, this analysis of experiences discusses the following questions: What are the reasons and factors for the previous unsuccessful and unsustainable cultivation of J. curcas for producing biodiesel? Can it be lucrative and simultaneously achieve poverty alleviation/job creation under the constraints of efficient use of resources (land and water)?.

Suggested Citation

  • Castro Gonzáles, Nirza Fabiola, 2016. "International experiences with the cultivation of Jatropha curcas for biodiesel production," Energy, Elsevier, vol. 112(C), pages 1245-1258.
  • Handle: RePEc:eee:energy:v:112:y:2016:i:c:p:1245-1258
    DOI: 10.1016/j.energy.2016.06.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216308477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adrian Marjolein Caniels & Henny Romijn, 2009. "The Jatropha Biofuels Sector in Tanzania 2005-9: Evolution Towards Sustainability?," Papers in Evolutionary Economic Geography (PEEG) 0919, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Nov 2009.
    2. Romijn, Henny A. & Caniëls, Marjolein C.J., 2011. "The Jatropha biofuels sector in Tanzania 2005-2009: Evolution towards sustainability?," Research Policy, Elsevier, vol. 40(4), pages 618-636, May.
    3. Singh, R.N. & Vyas, D.K. & Srivastava, N.S.L. & Narra, Madhuri, 2008. "SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy," Renewable Energy, Elsevier, vol. 33(8), pages 1868-1873.
    4. Divakara, B.N. & Upadhyaya, H.D. & Wani, S.P. & Gowda, C.L. Laxmipathi, 2010. "Biology and genetic improvement of Jatropha curcas L.: A review," Applied Energy, Elsevier, vol. 87(3), pages 732-742, March.
    5. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sharma, Meeta & Malhotra, R.K., 2009. "Influence of metal contaminants on oxidation stability of Jatropha biodiesel," Energy, Elsevier, vol. 34(9), pages 1271-1275.
    6. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    7. Isidro Ovando-Medina & Francisco Espinosa-García & Juan Núñez-Farfán & Miguel Salvador-Figueroa, 2009. "Does Biodiesel from Jatropha Curcas Represent a Sustainable Alternative Energy Source?," Sustainability, MDPI, vol. 1(4), pages 1-7, November.
    8. Ariza-Montobbio, Pere & Lele, Sharachchandra, 2010. "Jatropha plantations for biodiesel in Tamil Nadu, India: Viability, livelihood trade-offs, and latent conflict," Ecological Economics, Elsevier, vol. 70(2), pages 189-195, December.
    9. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K. & Kundu, K., 2009. "Effect of blends of Palm-Jatropha-Pongamia biodiesels on cloud point and pour point," Energy, Elsevier, vol. 34(11), pages 2016-2021.
    10. Kumar, Ashwani & Sharma, Satyawati, 2011. "Potential non-edible oil resources as biodiesel feedstock: An Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1791-1800, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heredia Salgado, Mario A. & Tarelho, Luís A.C. & Rivadeneira, Daniel & Ramírez, Valeria & Sinche, Danny, 2020. "Energetic valorization of the residual biomass produced during Jatropha curcas oil extraction," Renewable Energy, Elsevier, vol. 146(C), pages 1640-1648.
    2. Anika Trebbin, 2021. "Land Grabbing and Jatropha in India: An Analysis of ‘Hyped’ Discourse on the Subject," Land, MDPI, vol. 10(10), pages 1-21, October.
    3. Alherbawi, Mohammad & AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2021. "Optimum sustainable utilisation of the whole fruit of Jatropha curcas: An energy, water and food nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Petr Procházka & Luboš Smutka & Vladimír Hönig, 2019. "Using Biofuels for Highly Renewable Electricity Systems: A Case Study of the Jatropha curcas," Energies, MDPI, vol. 12(15), pages 1-17, August.
    6. Mizik, Tamás & Gyarmati, Gábor, 2022. "A biodízel-termelés gazdasági és fenntarthatósági vizsgálata szakirodalom-elemzéssel [Systematic literature review on the economic dimension and sustainability aspects of biodiesel production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 643-669.
    7. José A. León & Gisela Montero & Marcos A. Coronado & José R. Ayala & Daniela G. Montes & Laura J. Pérez & Lisandra Quintana & Jesús M. Armenta, 2022. "Thermodynamic Analysis of Waste Vegetable Oil Conversion to Biodiesel with Solar Energy," Energies, MDPI, vol. 15(5), pages 1-17, March.
    8. Tamás Mizik & Gábor Gyarmati, 2021. "Economic and Sustainability of Biodiesel Production—A Systematic Literature Review," Clean Technol., MDPI, vol. 3(1), pages 1-18, January.
    9. Asarudheen Abdudeen & Mohamed Y. E. Selim & Manigandan Sekar & Mahmoud Elgendi, 2023. "Jatropha’s Rapid Developments and Future Opportunities as a Renewable Source of Biofuel—A Review," Energies, MDPI, vol. 16(2), pages 1-28, January.
    10. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2019. "Characterization of biodiesel production (ultrasonic-assisted) from evening-primroses (Oenothera lamarckiana) as novel feedstock and its effect on CI engine parameters," Renewable Energy, Elsevier, vol. 130(C), pages 50-60.
    11. El-Seesy, Ahmed I. & Hassan, Hamdy & Ookawara, S., 2018. "Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine," Energy, Elsevier, vol. 147(C), pages 1129-1152.
    12. Wang, Yi-Tong & Cong, Wen-Jie & Zeng, Ya-Nan & Zhang, Yu-Qing & Liang, Jing-Long & Li, Jun-Guo & Jiang, Li-Qun & Fang, Zhen, 2021. "Direct production of biodiesel via simultaneous esterification and transesterification of renewable oils using calcined blast furnace dust," Renewable Energy, Elsevier, vol. 175(C), pages 1001-1011.
    13. Guadalupe Pérez & Jorge M. Islas-Samperio, 2021. "Sustainability Evaluation of Non-Toxic Jatropha curcas in Rural Marginal Soil for Obtaining Biodiesel Using Life-Cycle Assessment," Energies, MDPI, vol. 14(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalam, M.A. & Ahamed, J.U. & Masjuki, H.H., 2012. "Land availability of Jatropha production in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3999-4007.
    2. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.
    3. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    4. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    5. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    6. Sarin, Amit & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil," Energy, Elsevier, vol. 35(12), pages 4645-4648.
    7. Asarudheen Abdudeen & Mohamed Y. E. Selim & Manigandan Sekar & Mahmoud Elgendi, 2023. "Jatropha’s Rapid Developments and Future Opportunities as a Renewable Source of Biofuel—A Review," Energies, MDPI, vol. 16(2), pages 1-28, January.
    8. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    9. Gasparatos, A. & von Maltitz, G.P. & Johnson, F.X. & Lee, L. & Mathai, M. & Puppim de Oliveira, J.A. & Willis, K.J., 2015. "Biofuels in sub-Sahara Africa: Drivers, impacts and priority policy areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 879-901.
    10. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    11. Pandey, Krishan K. & Pragya, Namita & Sahoo, P.K., 2011. "Life cycle assessment of small-scale high-input Jatropha biodiesel production in India," Applied Energy, Elsevier, vol. 88(12), pages 4831-4839.
    12. A.N. Siregar & J.A. Ghani & C.H.C. Haron & M. Rizal & Z. Yaakob & S.K. Kamarudin, 2015. "Comparison of oil press for jatropha oil - a review," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 61(1), pages 1-13.
    13. Moniruzzaman, M. & Yaakob, Zahira & Khatun, Rahima, 2016. "Biotechnology for Jatropha improvement: A worthy exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1262-1277.
    14. Yaakob, Zahira & Narayanan, Binitha N. & Padikkaparambil, Silija & Unni K., Surya & Akbar P., Mohammed, 2014. "A review on the oxidation stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 136-153.
    15. Julio C. Sacramento Rivero & Amarella Eastmond-Spencer & Javier Becerril García & Freddy S. Navarro-Pineda, 2016. "A Three-Dimensional Sustainability Evaluation of Jatropha Plantations in Yucatan, Mexico," Sustainability, MDPI, vol. 8(12), pages 1-18, December.
    16. Shemelis N. Gebremariam & Trine Hvoslef-Eide & Meseret T. Terfa & Jorge M. Marchetti, 2019. "Techno-Economic Performance of Different Technological Based Bio-Refineries for Biofuel Production," Energies, MDPI, vol. 12(20), pages 1-21, October.
    17. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    18. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Blends of biodiesels synthesized from non-edible and edible oils: Influence on the OS (oxidation stability)," Energy, Elsevier, vol. 35(8), pages 3449-3453.
    19. Hans Rawhouser & Michael Cummings & Scott L. Newbert, 2019. "Social Impact Measurement: Current Approaches and Future Directions for Social Entrepreneurship Research," Entrepreneurship Theory and Practice, , vol. 43(1), pages 82-115, January.
    20. Michael Brüntrup & Fabian Schwarz & Thomas Absmayr & Jonas Dylla & Franziska Eckhard & Kerstin Remke & Konrad Sternisko, 2018. "Nucleus-outgrower schemes as an alternative to traditional smallholder agriculture in Tanzania – strengths, weaknesses and policy requirements," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 807-826, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:112:y:2016:i:c:p:1245-1258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.