IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p616-d1025235.html
   My bibliography  Save this article

A Scientometric Review of CO 2 Electroreduction Research from 2005 to 2022

Author

Listed:
  • Hongfei Wang

    (National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Zhipeng Yu

    (National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Jie Zhou

    (National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Chengming Li

    (National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Ananthanarasimhan Jayanarasimhan

    (Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru 560012, India)

  • Xiqiang Zhao

    (National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Hao Zhang

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

Abstract

Electrocatalytic CO 2 reduction is regarded as a green and promising technology because it can convert carbon dioxide into value-added fuel or chemicals in a flexible and sustainable way. This research aimed to comprehensively analyze the research hotspots and trends in the field of CO 2 electroreduction from 2005 to 2022 using bibliometric methods based on the core database of Web of Science. The results showed that 4546 papers on CO 2 electroreduction were retrieved from 2005 to 2022, with a clear increasing trend. The research direction was diversified, involving multiple disciplines, and it is a comprehensive research field. ACS Catalysis is the journal with the largest number of articles. China is the country with the largest number of documents and has made significant contributions to the development and progress of this field. Copper-based catalysts are still the research focus in recent years. It is of great practical significance to develop copper-based catalysts with high efficiency, low cost, high stability, and high selectivity for the preparation of C 1 products.

Suggested Citation

  • Hongfei Wang & Zhipeng Yu & Jie Zhou & Chengming Li & Ananthanarasimhan Jayanarasimhan & Xiqiang Zhao & Hao Zhang, 2023. "A Scientometric Review of CO 2 Electroreduction Research from 2005 to 2022," Energies, MDPI, vol. 16(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:616-:d:1025235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/616/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/616/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeremy D. Shakun & Peter U. Clark & Feng He & Shaun A. Marcott & Alan C. Mix & Zhengyu Liu & Bette Otto-Bliesner & Andreas Schmittner & Edouard Bard, 2012. "Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation," Nature, Nature, vol. 484(7392), pages 49-54, April.
    2. Shan Gao & Yue Lin & Xingchen Jiao & Yongfu Sun & Qiquan Luo & Wenhua Zhang & Dianqi Li & Jinlong Yang & Yi Xie, 2016. "Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel," Nature, Nature, vol. 529(7584), pages 68-71, January.
    3. Christina W. Li & Jim Ciston & Matthew W. Kanan, 2014. "Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper," Nature, Nature, vol. 508(7497), pages 504-507, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qahtan, Talal F. & Alade, Ibrahim O. & Rahaman, Md Safiqur & Saleh, Tawfik A., 2023. "Mapping the research landscape of hydrogen production through electrocatalysis: A decade of progress and key trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Lowy, Daniel A. & Melendez, Jesus R. & Mátyás, Bence, 2024. "Electroreduction of carbon dioxide to liquid fuels: A low-cost, sustainable technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guifeng Ma & Olga A. Syzgantseva & Yan Huang & Dragos Stoian & Jie Zhang & Shuliang Yang & Wen Luo & Mengying Jiang & Shumu Li & Chunjun Chen & Maria A. Syzgantseva & Sen Yan & Ningyu Chen & Li Peng &, 2023. "A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Pranav P. Sharma & Xiao‐Dong Zhou, 2017. "Electrocatalytic conversion of carbon dioxide to fuels: a review on the interaction between CO2 and the liquid electrolyte," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
    3. Nannan Meng & Zhitan Wu & Yanmei Huang & Jie Zhang & Maoxin Chen & Haibin Ma & Hongjiao Li & Shibo Xi & Ming Lin & Wenya Wu & Shuhe Han & Yifu Yu & Quan-Hong Yang & Bin Zhang & Kian Ping Loh, 2024. "High yield electrosynthesis of oxygenates from CO using a relay Cu-Ag co-catalyst system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Junyuan Duan & Tianyang Liu & Yinghe Zhao & Ruoou Yang & Yang Zhao & Wenbin Wang & Youwen Liu & Huiqiao Li & Yafei Li & Tianyou Zhai, 2022. "Active and conductive layer stacked superlattices for highly selective CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    6. Shuai Zhang & Zhoufei Yu & Yue Wang & Xun Gong & Ann Holbourn & Fengming Chang & Heng Liu & Xuhua Cheng & Tiegang Li, 2022. "Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Fernando Goulart & Frédéric Mertens, 2017. "The Late mangos- Is There Any Doubt Humans Are Inducing Climate Change?," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(7), pages 2022-2024, December.
    8. Seung-Jae Shin & Hansol Choi & Stefan Ringe & Da Hye Won & Hyung-Suk Oh & Dong Hyun Kim & Taemin Lee & Dae-Hyun Nam & Hyungjun Kim & Chang Hyuck Choi, 2022. "A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Darband, Ghasem Barati & Aliofkhazraei, Mahmood & Shanmugam, Sangaraju, 2019. "Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Kaili Yao & Jun Li & Adnan Ozden & Haibin Wang & Ning Sun & Pengyu Liu & Wen Zhong & Wei Zhou & Jieshu Zhou & Xi Wang & Hanqi Liu & Yongchang Liu & Songhua Chen & Yongfeng Hu & Ziyun Wang & David Sint, 2024. "In situ copper faceting enables efficient CO2/CO electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Granville Tunnicliffe Wilson & John Haywood & Lynda Petherick, 2022. "Modeling cycles and interdependence in irregularly sampled geophysical time series," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
    12. Inmaculada Carrasco & Juan Sebastián Castillo-Valero & Carmen Córcoles & Marcos Carchano, 2021. "Greening Wine Exports? Changes in the Carbon Footprint of Spanish Wine Exports," IJERPH, MDPI, vol. 18(17), pages 1-13, August.
    13. TsingHai Wang & Cheng-Di Dong & Jui-Yen Lin & Chiu-Wen Chen & Jo-Shu Chang & Hyunook Kim & Chin-Pao Huang & Chang-Mao Hung, 2021. "Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    14. Jiqing Jiao & Qing Yuan & Meijie Tan & Xiaoqian Han & Mingbin Gao & Chao Zhang & Xuan Yang & Zhaolin Shi & Yanbin Ma & Hai Xiao & Jiangwei Zhang & Tongbu Lu, 2023. "Constructing asymmetric double-atomic sites for synergistic catalysis of electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Hefei Li & Pengfei Wei & Tianfu Liu & Mingrun Li & Chao Wang & Rongtan Li & Jinyu Ye & Zhi-You Zhou & Shi-Gang Sun & Qiang Fu & Dunfeng Gao & Guoxiong Wang & Xinhe Bao, 2024. "CO electrolysis to multicarbon products over grain boundary-rich Cu nanoparticles in membrane electrode assembly electrolyzers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    17. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Rial, Rafael Cardoso, 2024. "Biofuels versus climate change: Exploring potentials and challenges in the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    19. Wenzhe Niu & Jie Feng & Junfeng Chen & Lei Deng & Wen Guo & Huajing Li & Liqiang Zhang & Youyong Li & Bo Zhang, 2024. "High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Xinyi Ren & Jian Zhao & Xuning Li & Junming Shao & Binbin Pan & Aude Salamé & Etienne Boutin & Thomas Groizard & Shifu Wang & Jie Ding & Xiong Zhang & Wen-Yang Huang & Wen-Jing Zeng & Chengyu Liu & Ya, 2023. "In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:616-:d:1025235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.