IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1772-d1064309.html
   My bibliography  Save this article

Computational Fluid Dynamic Models of Wind Turbine Wakes

Author

Listed:
  • Antonio Crespo

    (Energy Engineering Department, Universidad Politécnica de Madrid, 28006 Madrid, Spain)

Abstract

Wind energy is one of the main sources of renewable energy that does not contaminate and contributes significantly to the reduction of burning fossil fuels that originate global warming by creating greenhouse gasses; therefore, a significant part the electric energy produced presently is of wind origin, and this share is expected to become more important in the next years [...]

Suggested Citation

  • Antonio Crespo, 2023. "Computational Fluid Dynamic Models of Wind Turbine Wakes," Energies, MDPI, vol. 16(4), pages 1-3, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1772-:d:1064309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taiwo Adedipe & Ashvinkumar Chaudhari & Antti Hellsten & Tuomo Kauranne & Heikki Haario, 2022. "Numerical Investigation on the Effects of Forest Heterogeneity on Wind-Turbine Wake," Energies, MDPI, vol. 15(5), pages 1-27, March.
    2. Feifei Xue & Heping Duan & Chang Xu & Xingxing Han & Yanqing Shangguan & Tongtong Li & Zhefei Fen, 2022. "Research on the Power Capture and Wake Characteristics of a Wind Turbine Based on a Modified Actuator Line Model," Energies, MDPI, vol. 15(1), pages 1-20, January.
    3. Stevens, Richard J.A.M. & Martínez-Tossas, Luis A. & Meneveau, Charles, 2018. "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 116(PA), pages 470-478.
    4. Mojtaba Kheiri & Samson Victor & Sina Rangriz & Mher M. Karakouzian & Frederic Bourgault, 2022. "Aerodynamic Performance and Wake Flow of Crosswind Kite Power Systems," Energies, MDPI, vol. 15(7), pages 1-25, March.
    5. Weimin Wu & Xiongfei Liu & Jingcheng Liu & Shunpeng Zeng & Chuande Zhou & Xiaomei Wang, 2021. "Investigation into Yaw Motion Influence of Horizontal-Axis Wind Turbine on Wake Flow Using LBM-LES," Energies, MDPI, vol. 14(17), pages 1-37, August.
    6. Martin Geibel & Galih Bangga, 2022. "Data Reduction and Reconstruction of Wind Turbine Wake Employing Data Driven Approaches," Energies, MDPI, vol. 15(10), pages 1-40, May.
    7. Hyebin Kim & Sang Lee, 2022. "Large Eddy Simulation of Yawed Wind Turbine Wake Deformation," Energies, MDPI, vol. 15(17), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor P. Stein & Hans-Jakob Kaltenbach, 2022. "Validation of a Large-Eddy Simulation Approach for Prediction of the Ground Roughness Influence on Wind Turbine Wakes," Energies, MDPI, vol. 15(7), pages 1-25, April.
    2. Yunliang Li & Zhaobin Li & Zhideng Zhou & Xiaolei Yang, 2023. "Large-Eddy Simulation of Wind Turbine Wakes in Forest Terrain," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    3. Abutunis, A. & Taylor, G. & Fal, M. & Chandrashekhara, K., 2020. "Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system," Renewable Energy, Elsevier, vol. 157(C), pages 232-245.
    4. Kale, Baris & Buckingham, Sophia & van Beeck, Jeroen & Cuerva-Tejero, Alvaro, 2023. "Comparison of the wake characteristics and aerodynamic response of a wind turbine under varying atmospheric conditions using WRF-LES-GAD and WRF-LES-GAL wind turbine models," Renewable Energy, Elsevier, vol. 216(C).
    5. Ge, Mingwei & Gayme, Dennice F. & Meneveau, Charles, 2021. "Large-eddy simulation of wind turbines immersed in the wake of a cube-shaped building," Renewable Energy, Elsevier, vol. 163(C), pages 1063-1077.
    6. Zehtabiyan-Rezaie, Navid & Abkar, Mahdi, 2024. "An extended k−ɛ model for wake-flow simulation of wind farms," Renewable Energy, Elsevier, vol. 222(C).
    7. Galih Bangga, 2022. "Progress and Outlook in Wind Energy Research," Energies, MDPI, vol. 15(18), pages 1-5, September.
    8. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
    9. Yiyang Sun & Xiangwen Wang & Junjie Yang, 2022. "Modified Particle Swarm Optimization with Attention-Based LSTM for Wind Power Prediction," Energies, MDPI, vol. 15(12), pages 1-17, June.
    10. Hyebin Kim & Sang Lee, 2022. "Large Eddy Simulation of Yawed Wind Turbine Wake Deformation," Energies, MDPI, vol. 15(17), pages 1-12, August.
    11. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    12. Rivera-Arreba, Irene & Li, Zhaobin & Yang, Xiaolei & Bachynski-Polić, Erin E., 2024. "Comparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes," Renewable Energy, Elsevier, vol. 221(C).
    13. Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
    14. Kang, Yujoo & Kim, Hyebin & Lee, Sang, 2023. "Benefits of individual pitch control on offshore wind turbine submerged in upstream wake," Renewable Energy, Elsevier, vol. 217(C).
    15. Luo, Zhaohui & Wang, Longyan & Xu, Jian & Wang, Zilu & Yuan, Jianping & Tan, Andy C.C., 2024. "A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements," Energy, Elsevier, vol. 294(C).
    16. Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
    17. Eidi, Ali & Ghiassi, Reza & Yang, Xiang & Abkar, Mahdi, 2021. "Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 2212-2223.
    18. Asmuth, Henrik & Navarro Diaz, Gonzalo P. & Madsen, Helge Aagaard & Branlard, Emmanuel & Meyer Forsting, Alexander R. & Nilsson, Karl & Jonkman, Jason & Ivanell, Stefan, 2022. "Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements," Renewable Energy, Elsevier, vol. 191(C), pages 868-887.
    19. Hegazy, Amr & Blondel, Frédéric & Cathelain, Marie & Aubrun, Sandrine, 2022. "LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models," Renewable Energy, Elsevier, vol. 181(C), pages 457-471.
    20. Takanori Uchida, 2020. "Effects of Inflow Shear on Wake Characteristics of Wind-Turbines over Flat Terrain," Energies, MDPI, vol. 13(14), pages 1-31, July.

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1772-:d:1064309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.