Torrefaction of Willow in Batch Reactor and Co-Firing of Torrefied Willow with Coal
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
- Başar, İ.A. & Kökdemir Ünşar, E. & Ünyay, H. & Perendeci, N.A., 2020. "Ethanol, methane, or both? Enzyme dose impact on ethanol and methane production from untreated energy crop switchgrass varieties," Renewable Energy, Elsevier, vol. 149(C), pages 287-297.
- Kopczyński, Marcin & Lasek, Janusz A. & Iluk, Andrzej & Zuwała, Jarosław, 2017. "The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing)," Energy, Elsevier, vol. 140(P1), pages 1316-1325.
- Tomasz Kalak, 2023. "Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future," Energies, MDPI, vol. 16(4), pages 1-25, February.
- Bruno Esteves & Umut Sen & Helena Pereira, 2023. "Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis," Energies, MDPI, vol. 16(10), pages 1-17, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Božidar Matin & Ivan Brandić & Ana Matin & Josip Ištvanić & Alan Antonović, 2024. "Possibilities of Liquefied Spruce ( Picea abies ) and Oak ( Quercus robur ) Biomass as an Environmentally Friendly Additive in Conventional Phenol–Formaldehyde Resin Wood Adhesives," Energies, MDPI, vol. 17(17), pages 1-18, September.
- Bernardine Chidozie & Ana Ramos & José Vasconcelos & Luis Pinto Ferreira & Reinaldo Gomes, 2024. "Highlighting Sustainability Criteria in Residual Biomass Supply Chains: A Dynamic Simulation Approach," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
- Sher, Farooq & Yaqoob, Aqsa & Saeed, Farrukh & Zhang, Shengfu & Jahan, Zaib & Klemeš, Jiří Jaromír, 2020. "Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation," Energy, Elsevier, vol. 209(C).
- Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Chengheng & Liu, Hao & Lester, Edward & Wu, Tao, 2020. "In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends," Energy, Elsevier, vol. 199(C).
- Grzegorz Maj & Kamil Buczyński & Kamila E. Klimek & Magdalena Kapłan, 2024. "Evaluation of Growth and Energy Parameters of One-Year-Old Raspberry Shoots, Depending on the Variety," Energies, MDPI, vol. 17(13), pages 1-12, June.
- Wojciech Jerzak & Esther Acha & Bin Li, 2024. "Comprehensive Review of Biomass Pyrolysis: Conventional and Advanced Technologies, Reactor Designs, Product Compositions and Yields, and Techno-Economic Analysis," Energies, MDPI, vol. 17(20), pages 1-31, October.
- Mirosław Wyszkowski & Natalia Kordala, 2024. "Trace Elements in Maize Biomass Used to Phyto-Stabilise Iron-Contaminated Soils for Energy Production," Energies, MDPI, vol. 17(12), pages 1-15, June.
- Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).
- Vershinina, K. Yu & Shlegel, N.E. & Strizhak, P.A., 2019. "Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes," Energy, Elsevier, vol. 169(C), pages 18-28.
- Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
- Pronobis, Marek & Wejkowski, Robert & Kalisz, Sylwester & Ciukaj, Szymon, 2023. "Conversion of a pulverized coal boiler into a torrefied biomass boiler," Energy, Elsevier, vol. 262(PB).
- Hilal Unyay & Nuriye Altınay Perendeci & Piotr Piersa & Szymon Szufa & Agata Skwarczynska-Wojsa, 2024. "Harnessing Switchgrass for Sustainable Energy: Bioethanol Production Processes and Pretreatment Technologies," Energies, MDPI, vol. 17(19), pages 1-13, September.
- Chunshuo Song & Ning Guo & Fengying Ren & Xiaohan Ren, 2024. "Simulation of Power Generation System with Co-Combustion of Coal and Torrefied Biomass by Flue Gas," Energies, MDPI, vol. 17(12), pages 1-20, June.
- Jiaao Zhu & Yun Guo & Na Chen & Baoming Chen, 2024. "A Review of the Efficient and Thermal Utilization of Biomass Waste," Sustainability, MDPI, vol. 16(21), pages 1-30, October.
- Chen, Wen-Lih & Sirisha, Vadlakonda & Yu, Chi-Yuan & Wang, Yan-Ru & Dai, Ming-Wei & Lasek, Janusz & Li, Yueh-Heng, 2024. "Design and optimization of a combined heat and power system with a fluidized-bed combustor and stirling engine," Energy, Elsevier, vol. 293(C).
- Lukáš Krátký & Stanislaw Ledakowicz & Radoslaw Slezak & Vojtěch Bělohlav & Peter Peciar & Máté Petrik & Tomáš Jirout & Marián Peciar & Zoltán Siménfalvi & Radek Šulc & Zoltán Szamosi, 2024. "Emerging Sustainability in Carbon Capture and Use Strategies for V4 Countries via Biochemical Pathways: A Review," Sustainability, MDPI, vol. 16(3), pages 1-22, January.
- Sungur, Bilal & Topaloğlu, Bahattin, 2020. "Experimental analysis of combustion performance of biodiesel absorbed pellets in a domestic boiler," Energy, Elsevier, vol. 201(C).
- Atimtay, Aysel & Yurdakul, Sema, 2020. "Combustion and Co-Combustion characteristics of torrefied poultry litter with lignite," Renewable Energy, Elsevier, vol. 148(C), pages 1292-1301.
- Krzysztof Pilarski & Agnieszka A. Pilarska & Alicja Kolasa-Więcek & Dariusz Suszanowicz, 2023. "An Agricultural Biogas Plant as a Thermodynamic System: A Study of Efficiency in the Transformation from Primary to Secondary Energy," Energies, MDPI, vol. 16(21), pages 1-15, November.
- Agata Borowik & Jadwiga Wyszkowska & Magdalena Zaborowska & Jan Kucharski, 2024. "Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil," Energies, MDPI, vol. 17(11), pages 1-21, May.
More about this item
Keywords
torrefaction; co-torrefaction; biochar; reactor design; TGA-FTIR; TG/MS;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8083-:d:1301117. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.