IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp287-297.html
   My bibliography  Save this article

Ethanol, methane, or both? Enzyme dose impact on ethanol and methane production from untreated energy crop switchgrass varieties

Author

Listed:
  • Başar, İ.A.
  • Kökdemir Ünşar, E.
  • Ünyay, H.
  • Perendeci, N.A.

Abstract

The production of bioethanol and subsequent methane from two raw switchgrass varieties with the addition of cellulase and β-glucosidase dose combinations was investigated in this study. Maximum ethanol production increment for the investigated varieties, Shawneé and Kanlow, were determined as 211.9% and 166.7%, respectively, compared to the control assays without enzymes. Considering higher ethanol production a priority, 42.0 mg EtOH/gVS and 223.5 mLCH4/gVS were produced from Shawneé variety at 50 EGU cellulase – 80 IU β-glucosidase doses. 20.2 mgEtOH/gVS, and 400.7 mLCH4/gVS were produced from Kanlow variety at 75 EGU cellulase – 80 IU β-Glucosidase doses. Furthermore, the highest total biofuel energy productions were found as 10750,9 MJ/tonne field dried switchgrass at 75 EGU cellulase – 20 IU β-glucosidase doses for Shawneé and 13556,9 MJ/tonne field dried switchgrass at 75 EGU cellulase – 80 IU β-glucosidase doses for Kanlow. Shawneé variety was found to be more suitable for cellulosic ethanol production.

Suggested Citation

  • Başar, İ.A. & Kökdemir Ünşar, E. & Ünyay, H. & Perendeci, N.A., 2020. "Ethanol, methane, or both? Enzyme dose impact on ethanol and methane production from untreated energy crop switchgrass varieties," Renewable Energy, Elsevier, vol. 149(C), pages 287-297.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:287-297
    DOI: 10.1016/j.renene.2019.12.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811931897X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Inn Shi & Lee, Keat Teong, 2014. "Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: An optimization study," Energy, Elsevier, vol. 78(C), pages 53-62.
    2. Chang, Wei-Ru & Hwang, Jenn-Jiang & Wu, Wei, 2017. "Environmental impact and sustainability study on biofuels for transportation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 277-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hilal Unyay & Nuriye Altınay Perendeci & Piotr Piersa & Szymon Szufa & Agata Skwarczynska-Wojsa, 2024. "Harnessing Switchgrass for Sustainable Energy: Bioethanol Production Processes and Pretreatment Technologies," Energies, MDPI, vol. 17(19), pages 1-13, September.
    2. Hilal Unyay & Piotr Piersa & Magdalena Zabochnicka & Zdzisława Romanowska-Duda & Piotr Kuryło & Ksawery Kuligowski & Paweł Kazimierski & Taras Hutsol & Arkadiusz Dyjakon & Edyta Wrzesińska-Jędrusiak &, 2023. "Torrefaction of Willow in Batch Reactor and Co-Firing of Torrefied Willow with Coal," Energies, MDPI, vol. 16(24), pages 1-23, December.
    3. Başar, İbrahim Alper & Perendeci, Nuriye Altınay, 2021. "Optimization of zero-waste hydrogen peroxide - Acetic acid pretreatment for sequential ethanol and methane production," Energy, Elsevier, vol. 225(C).
    4. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Boreum & Park, Junhyung & Lee, Hyunjun & Byun, Manhee & Yoon, Chang Won & Lim, Hankwon, 2019. "Assessment of the economic potential: COx-free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    3. Nayak, Abhishek & Pulidindi, Indra Neel & Rao, Chinta Sankar, 2020. "Novel strategies for glucose production from biomass using heteropoly acid catalyst," Renewable Energy, Elsevier, vol. 159(C), pages 215-220.
    4. Morganti, Kai & Al-Abdullah, Marwan & Alzubail, Abdullah & Kalghatgi, Gautam & Viollet, Yoann & Head, Robert & Khan, Ahmad & Abdul-Manan, Amir, 2017. "Synergistic engine-fuel technologies for light-duty vehicles: Fuel economy and Greenhouse Gas Emissions," Applied Energy, Elsevier, vol. 208(C), pages 1538-1561.
    5. Herika Mylena Medeiros de Queiroz Andrade & Luiz Pinguelli Rosa & Flavo Elano Soares de Souza & Neilton Fidelis da Silva & Maulori Curié Cabral & Dárlio Inácio Alves Teixeira, 2020. "Seaweed Production Potential in the Brazilian Northeast: A Study on the Eastern Coast of the State of Rio Grande do Norte, RN, Brazil," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    6. Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
    7. Sirajunnisa, Abdul Razack & Surendhiran, Duraiarasan, 2016. "Algae – A quintessential and positive resource of bioethanol production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 248-267.
    8. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    10. Da Huang & Mei Han, 2021. "Research on Evaluation Method of Freight Transportation Environmental Sustainability," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    11. Matea Bačić & Anabela Ljubić & Martin Gojun & Anita Šalić & Ana Jurinjak Tušek & Bruno Zelić, 2021. "Continuous Integrated Process of Biodiesel Production and Purification—The End of the Conventional Two-Stage Batch Process?," Energies, MDPI, vol. 14(2), pages 1-17, January.
    12. de Souza, Lorena Mendes & Mendes, Pietro A.S. & Aranda, Donato A.G., 2018. "Assessing the current scenario of the Brazilian biojet market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 426-438.
    13. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.
    14. Sudhakar, M.P. & Jegatheesan, A. & Poonam, C. & Perumal, K. & Arunkumar, K., 2017. "Biosaccharification and ethanol production from spent seaweed biomass using marine bacteria and yeast," Renewable Energy, Elsevier, vol. 105(C), pages 133-139.
    15. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    16. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    17. Jambo, Siti Azmah & Abdulla, Rahmath & Marbawi, Hartinie & Gansau, Jualang Azlan, 2019. "Response surface optimization of bioethanol production from third generation feedstock - Eucheuma cottonii," Renewable Energy, Elsevier, vol. 132(C), pages 1-10.
    18. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    19. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    20. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:287-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.