IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p7939-d1295328.html
   My bibliography  Save this article

Cooling Methods for Standard and Floating PV Panels

Author

Listed:
  • Arnas Majumder

    (Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy)

  • Amit Kumar

    (Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy)

  • Roberto Innamorati

    (Department of Civil, Environmental and Architectural Engineering (DiCAAR), University of Cagliari, 09123 Cagliari, Italy
    Deceased.)

  • Costantino Carlo Mastino

    (Department of Civil, Environmental and Architectural Engineering (DiCAAR), University of Cagliari, 09123 Cagliari, Italy)

  • Giancarlo Cappellini

    (Department of Physics, University of Cagliari, CNR-IOM SLACS and ETSF, Cittadella Universitaria di Monserrato, Strada Prov.le Monserrato-Sestu, km 0.700, Monserrato, 09042 Cagliari, Italy)

  • Roberto Baccoli

    (Department of Civil, Environmental and Architectural Engineering (DiCAAR), University of Cagliari, 09123 Cagliari, Italy)

  • Gianluca Gatto

    (Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy)

Abstract

Energy and water poverty are two main challenges of the modern world. Most developing and underdeveloped countries need more efficient electricity-producing sources to overcome the problem of potable water evaporation. At the same time, the traditional way to produce energy/electricity is also responsible for polluting the environment and damaging the ecosystem. Notably, many techniques have been used around the globe, such as a photovoltaic (PV) cooling (active, passive, and combined) process to reduce the working temperature of the PV panels (up to 60 °C) to improve the system efficiency. For floating photovoltaic (FPV), water cooling is mainly responsible for reducing the panel temperature to enhance the production capacity of the PV panels, while the system efficiency can increase up to around 30%. At the same time, due to the water surface covering, the water loss due to evaporation is also minimized, and the water evaporation could be minimized by up to 60% depending on the total area covered by the water surfaces. Therefore, it could be the right choice for generating clean and green energy, with dual positive effects. The first is to improve the efficiency of the PV panels to harness more energy and minimize water evaporation. This review article focuses mainly on various PV and FPV cooling methods and the use and advantages of FPV plants, particularly covering efficiency augmentation and reduction of water evaporation due to the installation of PV systems on the water bodies.

Suggested Citation

  • Arnas Majumder & Amit Kumar & Roberto Innamorati & Costantino Carlo Mastino & Giancarlo Cappellini & Roberto Baccoli & Gianluca Gatto, 2023. "Cooling Methods for Standard and Floating PV Panels," Energies, MDPI, vol. 16(24), pages 1-28, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:7939-:d:1295328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/7939/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/7939/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafael M. Almeida & Rafael Schmitt & Steven M. Grodsky & Alexander S. Flecker & Carla P. Gomes & Lu Zhao & Haohui Liu & Nathan Barros & Rafael Kelman & Peter B. McIntyre, 2022. "Floating solar power could help fight climate change — let’s get it right," Nature, Nature, vol. 606(7913), pages 246-249, June.
    2. Hassan, Ali & Wahab, Abdul & Qasim, Muhammad Arslan & Janjua, Muhammad Mansoor & Ali, Muhammad Aon & Ali, Hafiz Muhammad & Jadoon, Tufail Rehman & Ali, Ejaz & Raza, Ahsan & Javaid, Noshairwan, 2020. "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system," Renewable Energy, Elsevier, vol. 145(C), pages 282-293.
    3. Benghanem, M. & Al-Mashraqi, A.A. & Daffallah, K.O., 2016. "Performance of solar cells using thermoelectric module in hot sites," Renewable Energy, Elsevier, vol. 89(C), pages 51-59.
    4. Elminshawy, Nabil A.S. & El-Damhogi, D.G. & Ibrahim, I.A. & Elminshawy, Ahmed & Osama, Amr, 2022. "Assessment of floating photovoltaic productivity with fins-assisted passive cooling," Applied Energy, Elsevier, vol. 325(C).
    5. Waqas, Adeel & Ji, Jie & Xu, Lijie & Ali, Majid & Zeashan, & Alvi, Jahanzeb, 2018. "Thermal and electrical management of photovoltaic panels using phase change materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 254-271.
    6. Fernando Roberto dos Santos & Giovana Katie Wiecheteck & Jorim Sousa das Virgens Filho & Gabriel Alfredo Carranza & Terrence Lynn Chambers & Afef Fekih, 2022. "Effects of a Floating Photovoltaic System on the Water Evaporation Rate in the Passaúna Reservoir, Brazil," Energies, MDPI, vol. 15(17), pages 1-16, August.
    7. Muñoz-Cerón, Emilio & Osorio-Aravena, Juan Carlos & Rodríguez-Segura, Francisco Javier & Frolova, Marina & Ruano-Quesada, Antonio, 2023. "Floating photovoltaics systems on water irrigation ponds: Technical potential and multi-benefits analysis," Energy, Elsevier, vol. 271(C).
    8. Arnas Majumder & Roberto Innamorati & Andrea Frattolillo & Amit Kumar & Gianluca Gatto, 2021. "Performance Analysis of a Floating Photovoltaic System and Estimation of the Evaporation Losses Reduction," Energies, MDPI, vol. 14(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yildirim, Mehmet Ali & Cebula, Artur, 2024. "A numerical and experimental analysis of a novel highly-efficient water-based PV/T system," Energy, Elsevier, vol. 289(C).
    2. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    3. Ranawade, Vishal & Nalwa, Kanwar Singh, 2023. "Multilayered PCMs-based cooling solution for photovoltaic modules: Modelling and experimental study," Renewable Energy, Elsevier, vol. 216(C).
    4. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    5. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    7. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    8. Poddar, V.S. & Ranawade, V.A. & Dhokey, N.B., 2022. "Study of synergy between photovoltaic, thermoelectric and direct evaporative cooling system for improved performance," Renewable Energy, Elsevier, vol. 182(C), pages 817-826.
    9. Li, Xinyi & Cui, Wei & Simon, Terrence & Ma, Ting & Cui, Tianhong & Wang, Qiuwang, 2021. "Pore-scale analysis on selection of composite phase change materials for photovoltaic thermal management," Applied Energy, Elsevier, vol. 302(C).
    10. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    11. Liang, Tao & Fu, Tong & Hu, Cong & Chen, Xiaohang & Su, Shanhe & Chen, Jincan, 2021. "Optimum matching of photovoltaic–thermophotovoltaic cells efficiently utilizing full-spectrum solar energy," Renewable Energy, Elsevier, vol. 173(C), pages 942-952.
    12. Alvi, Jahan Zeb & Feng, Yongqiang & Wang, Qian & Imran, Muhammad & Pei, Gang, 2021. "Effect of phase change materials on the performance of direct vapor generation solar organic Rankine cycle system," Energy, Elsevier, vol. 223(C).
    13. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    14. Shahsavar, Amin & Jha, Prabhakar & Arici, Muslum & Kefayati, Gholamreza, 2021. "A comparative experimental investigation of energetic and exergetic performances of water/magnetite nanofluid-based photovoltaic/thermal system equipped with finned and unfinned collectors," Energy, Elsevier, vol. 220(C).
    15. Zeng, Fanxu & Bi, Cheng & Sree, Dharma & Huang, Guoxing & Zhang, Ningchuan & Law, Adrian Wing-Keung, 2023. "An Adaptive Barrier-Mooring System for Coastal Floating Solar Farms," Applied Energy, Elsevier, vol. 348(C).
    16. Schmitt, Rafael Jan Pablo & Rosa, Lorenzo, 2024. "Dams for hydropower and irrigation: Trends, challenges, and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    17. Cui, Yuanlong & Zhu, Jie & Zhang, Fan & Shao, Yiming & Xue, Yibing, 2022. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Khaled Teffah & Youtong Zhang & Xiao-long Mou, 2018. "Modeling and Experimentation of New Thermoelectric Cooler–Thermoelectric Generator Module," Energies, MDPI, vol. 11(3), pages 1-11, March.
    19. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.
    20. Khan, Sheher Yar & Waqas, Adeel & Kumar, Mahesh & Liu, Shuli & Shen, Yongliang & Chen, Tingsen & Shoaib, Muhammad & Khan, Muhammad Omair, 2024. "Experimental, numerical, and 4E assessment of photovoltaic module using macro-encapsulation of pure and nano phase change material: A comparative analysis," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:7939-:d:1295328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.