Experimental Investigation of Single-Cylinder Engine Performance Using Biodiesel Made from Waste Swine Oil
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mohammed Kamil & Fatima M. Almarashda, 2023. "Economic Viability and Engine Performance Evaluation of Biodiesel Derived from Desert Palm Date Seeds," Energies, MDPI, vol. 16(3), pages 1-22, February.
- An, H. & Yang, W.M. & Chou, S.K. & Chua, K.J., 2012. "Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions," Applied Energy, Elsevier, vol. 99(C), pages 363-371.
- Adhirath Mandal & Dowan Cha & HaengMuk Cho, 2023. "Impact of Waste Fry Biofuel on Diesel Engine Performance and Emissions," Energies, MDPI, vol. 16(9), pages 1-23, April.
- Fangyuan Zheng & Haengmuk Cho, 2023. "Combustion and Emission of Castor Biofuel Blends in a Single-Cylinder Diesel Engine," Energies, MDPI, vol. 16(14), pages 1-13, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ramozon Khujamberdiev & Haeng Muk Cho, 2025. "Artificial Intelligence in Automotives: ANNs’ Impact on Biodiesel Engine Performance and Emissions," Energies, MDPI, vol. 18(2), pages 1-21, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
- Chiatti, Giancarlo & Chiavola, Ornella & Palmieri, Fulvio, 2017. "Vibration and acoustic characteristics of a city-car engine fueled with biodiesel blends," Applied Energy, Elsevier, vol. 185(P1), pages 664-670.
- Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
- Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
- Edward Roper & Yaodong Wang & Zhichao Zhang, 2022. "Numerical Investigation of the Application of Miller Cycle and Low-Carbon Fuels to Increase Diesel Engine Efficiency and Reduce Emissions," Energies, MDPI, vol. 15(5), pages 1-20, February.
- E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
- Shen, Shiquan & Sun, Kai & Che, Zhizhao & Wang, Tianyou & Jia, Ming & Cai, Junqian, 2020. "Mechanism of micro-explosion of water-in-oil emulsified fuel droplet and its effect on soot generation," Energy, Elsevier, vol. 191(C).
- Liu, Haifeng & Li, Shanju & Zheng, Zunqing & Xu, Jia & Yao, Mingfa, 2013. "Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates," Applied Energy, Elsevier, vol. 112(C), pages 246-256.
- Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
- How, H.G. & Teoh, Y.H. & Krishnan, B. Navaneetha & Le, T.D. & Nguyen, H.T. & Prabhu, C., 2021. "Prediction of optimum Palm Oil Methyl Ester fuel blend for compression ignition engine using Response Surface Methodology," Energy, Elsevier, vol. 234(C).
- Bari, S. & Saad, Idris, 2014. "Effect of guide vane height on the performance and emissions of a compression ignition (CI) engine run with biodiesel through simulation and experiment," Applied Energy, Elsevier, vol. 136(C), pages 431-444.
- Kamil, Mohammed & Ramadan, Khalid M. & Olabi, Abdul Ghani & Al-Ali, Eman I. & Ma, Xiao & Awad, Omar I., 2020. "Economic, technical, and environmental viability of biodiesel blends derived from coffee waste," Renewable Energy, Elsevier, vol. 147(P1), pages 1880-1894.
- Herreros, J.M. & Jones, A. & Sukjit, E. & Tsolakis, A., 2014. "Blending lignin-derived oxygenate in enhanced multi-component diesel fuel for improved emissions," Applied Energy, Elsevier, vol. 116(C), pages 58-65.
- Mulkan, Andi & Mohd Zulkifli, Nurin Wahidah & Husin, Husni & Ahmadi, & Dahlan, Irvan, 2024. "Performance and emissions assessment under full load operation of an unmodified diesel engine running on biodiesel-based waste cooking oil synthesized using JPW solid catalyst," Renewable Energy, Elsevier, vol. 224(C).
- Solaimuthu, C. & Ganesan, V. & Senthilkumar, D. & Ramasamy, K.K., 2015. "Emission reductions studies of a biodiesel engine using EGR and SCR for agriculture operations in developing countries," Applied Energy, Elsevier, vol. 138(C), pages 91-98.
- Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Fazal, M.A. & Khan, Abdul Faheem & Fayaz, H. & Varman, M., 2013. "Impact of palm biodiesel blend on injector deposit formation," Applied Energy, Elsevier, vol. 111(C), pages 882-893.
- An, H. & Yang, W.M. & Li, J., 2015. "Effects of ethanol addition on biodiesel combustion: A modeling study," Applied Energy, Elsevier, vol. 143(C), pages 176-188.
- E, Jiaqiang & Liu, Teng & Yang, Wenming & Deng, Yuanwang & Gong, Jinke, 2016. "A skeletal mechanism modeling on soot emission characteristics for biodiesel surrogates with varying fatty acid methyl esters proportion," Applied Energy, Elsevier, vol. 181(C), pages 322-331.
- Aamir Shehzad & Arslan Ahmed & Moinuddin Mohammed Quazi & Muhammad Jamshaid & S. M. Ashrafur Rahman & Masjuki Haji Hassan & Hafiz Muhammad Asif Javed, 2021. "Current Research and Development Status of Corrosion Behavior of Automotive Materials in Biofuels," Energies, MDPI, vol. 14(5), pages 1-36, March.
More about this item
Keywords
waste lard oil; animal waste oil biofuel; biofuel emissions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7891-:d:1293212. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.