IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7531-d1278483.html
   My bibliography  Save this article

Applying a 2 kW Polymer Membrane Fuel-Cell Stack to Building Hybrid Power Sources for Unmanned Ground Vehicles

Author

Listed:
  • Magdalena Dudek

    (Faculty of Energy and Fuels, AGH University of Krakow, Av. Mickiewicza 30, 30-059 Krakow, Poland)

  • Mikołaj Zarzycki

    (Łukasiewicz Research Network—Industrial Research Institute for Automation and Measurements PIAP, Av. Jerozolimskie 202, 02-486 Warsaw, Poland)

  • Andrzej Raźniak

    (Faculty of Energy and Fuels, AGH University of Krakow, Av. Mickiewicza 30, 30-059 Krakow, Poland)

  • Maciej Rosół

    (Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, Av. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

The novel constructions of hybrid energy sources using polymer electrolyte fuel cells (PEMFCs), and supercapacitors are developed. Studies on the energy demand and peak electrical power of unmanned ground vehicles (UGVs) weighing up to 100 kg were conducted under various conditions. It was found that the average electrical power required does not exceed ~2 kW under all conditions studied. However, under the dynamic electrical load of the electric drive of mobile robots, the short peak power exceeded 2 kW, and the highest current load was in the range of 80–90 A. The electrical performance of a family of PEMFC stacks built in open-cathode mode was determined. A hydrogen-usage control strategy for power generation, cleaning processes, and humidification was analysed. The integration of a PEMFC stack with a bank of supercapacitors makes it possible to mitigate the voltage dips. These occur periodically at short time intervals as a result of short-circuit operation. In the second construction, the recovery of electrical energy dissipated by a short-circuit unit (SCU) was also demonstrated in the integrated PEMFC stack and supercapacitor bank system. The concept of an energy-efficient, mobile, and environmentally friendly hydrogen charging unit has been proposed. It comprises (i) a hydrogen anion exchange membrane electrolyser, (ii) a photovoltaic installation, (iii) a battery storage, (iv) a hydrogen buffer storage in a buffer tank, (v) a hydrogen compression unit, and (vi) composite tanks.

Suggested Citation

  • Magdalena Dudek & Mikołaj Zarzycki & Andrzej Raźniak & Maciej Rosół, 2023. "Applying a 2 kW Polymer Membrane Fuel-Cell Stack to Building Hybrid Power Sources for Unmanned Ground Vehicles," Energies, MDPI, vol. 16(22), pages 1-32, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7531-:d:1278483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arora, Akhil & Zantye, Manali S. & Hasan, M.M. Faruque, 2022. "Sustainable hydrogen manufacturing via renewable-integrated intensified process for refueling stations," Applied Energy, Elsevier, vol. 311(C).
    2. Mirzapour, Omid & Rui, Xinyang & Sahraei-Ardakani, Mostafa, 2023. "Transmission impedance control impacts on carbon emissions and renewable energy curtailment," Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christiana I. Kostaki & Pantelis A. Dratsas & Georgios N. Psarros & Evangelos S. Chatzistylianos & Stavros A. Papathanassiou, 2024. "A Novel Method to Integrate Hydropower Plants into Resource Adequacy Assessment Studies," Energies, MDPI, vol. 17(17), pages 1-22, August.
    2. Kim, Jeongdong & Qi, Meng & Park, Jinwoo & Moon, Il, 2023. "Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach," Applied Energy, Elsevier, vol. 339(C).
    3. Hao Zhang & Jingyue Yang & Chenxi Li & Pengcheng Guo & Jun Liu & Ruibao Jin & Jing Hu & Fengyuan Gan & Fei Cao, 2024. "Reasonable Energy-Abandonment Operation of a Combined Power Generation System with an Ultra-High Proportion of Renewable Energy," Energies, MDPI, vol. 17(8), pages 1-18, April.
    4. Mosè Rossi & Lingkang Jin & Andrea Monforti Ferrario & Marialaura Di Somma & Amedeo Buonanno & Christina Papadimitriou & Andrei Morch & Giorgio Graditi & Gabriele Comodi, 2024. "Energy Hub and Micro-Energy Hub Architecture in Integrated Local Energy Communities: Enabling Technologies and Energy Planning Tools," Energies, MDPI, vol. 17(19), pages 1-50, September.
    5. Ren-Long Zhang & Xiao-Hong Liu & Wei-Bo Jiang, 2023. "How Does the Industrial Digitization Affect Carbon Emission Efficiency? Empirical Measurement Evidence from China’s Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    6. Roberta Caponi & Enrico Bocci & Luca Del Zotto, 2022. "Techno-Economic Model for Scaling Up of Hydrogen Refueling Stations," Energies, MDPI, vol. 15(20), pages 1-16, October.
    7. Zhang, Chongchong & Cai, Xiangyu & Lin, Boqiang, 2023. "The low-carbon transition of China's power sector: Scale effect of grid upgrading," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7531-:d:1278483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.