IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1936-d1378287.html
   My bibliography  Save this article

Reasonable Energy-Abandonment Operation of a Combined Power Generation System with an Ultra-High Proportion of Renewable Energy

Author

Listed:
  • Hao Zhang

    (School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Jingyue Yang

    (School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Chenxi Li

    (School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Pengcheng Guo

    (School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Jun Liu

    (Henan Jiaotou Jiaozheng Expressway Co., Ltd., Zhengzhou 450003, China)

  • Ruibao Jin

    (Henan Jiaotou Jiaozheng Expressway Co., Ltd., Zhengzhou 450003, China)

  • Jing Hu

    (Henan Jiaotou Jiaozheng Expressway Co., Ltd., Zhengzhou 450003, China)

  • Fengyuan Gan

    (Henan Province Highway Engineering Bureau Group Co., Ltd., Zhengzhou 450000, China)

  • Fei Cao

    (Henan Railway Construction & Investment Group Co., Ltd., Zhengzhou 450046, China)

Abstract

With large-scale grid-connected renewable energy, new power systems require more flexible and reliable energy storage power sources. Pumped storage stations play an important role in peak shaving, valley filling, and promoting renewable energy consumption. This paper presents the reasonable energy-abandonment operation of a combined power generation system (CPGS), in which a pumped storage station is the core control power, with an ultra-high proportion of renewable energy. Firstly, based on the seasonal characteristics of wind, solar, and load demand, typical days are selected through improved clustering analysis algorithms. Then, a daily optimal scheduling model for combined power generation systems (CPGS) is developed with the goals of economy, low-carbon, and stable operation. Finally, the correlation between the energy-abandonment rate and pumped storage station peak shaving and system optimization operation indicators is obtained by a reasonable energy-abandonment calculation method considering source-grid-load coordination. Taking the operation data of an energy base in the western region of China as an example, when the penetration rate of renewable energy is 60–70% in the future, the operating cost on the power side is greatly affected by the construction of the source side. When the system operates at a planned reasonable energy-abandonment rate of 2%, electricity regulation, load tracking, and daily operating costs all show better performance.

Suggested Citation

  • Hao Zhang & Jingyue Yang & Chenxi Li & Pengcheng Guo & Jun Liu & Ruibao Jin & Jing Hu & Fengyuan Gan & Fei Cao, 2024. "Reasonable Energy-Abandonment Operation of a Combined Power Generation System with an Ultra-High Proportion of Renewable Energy," Energies, MDPI, vol. 17(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1936-:d:1378287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1936/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1936/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Makhdoomi, Sina & Askarzadeh, Alireza, 2020. "Daily performance optimization of a grid-connected hybrid system composed of photovoltaic and pumped hydro storage (PV/PHS)," Renewable Energy, Elsevier, vol. 159(C), pages 272-285.
    2. Shabani, Masoume & Dahlquist, Erik & Wallin, Fredrik & Yan, Jinyue, 2020. "Techno-economic comparison of optimal design of renewable-battery storage and renewable micro pumped hydro storage power supply systems: A case study in Sweden," Applied Energy, Elsevier, vol. 279(C).
    3. Mirzapour, Omid & Rui, Xinyang & Sahraei-Ardakani, Mostafa, 2023. "Transmission impedance control impacts on carbon emissions and renewable energy curtailment," Energy, Elsevier, vol. 278(C).
    4. Nasir, Jehanzeb & Javed, Adeel & Ali, Majid & Ullah, Kafait & Kazmi, Syed Ali Abbas, 2022. "Capacity optimization of pumped storage hydropower and its impact on an integrated conventional hydropower plant operation," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    2. Zhang, Yusheng & Zhao, Xuehua & Wang, Xin & Li, Aiyun & Wu, Xinhao, 2023. "Multi-objective optimization design of a grid-connected hybrid hydro-photovoltaic system considering power transmission capacity," Energy, Elsevier, vol. 284(C).
    3. Yanyue Wang & Guohua Fang & Zhenni Wang, 2022. "The Benefit Realization Mechanism of Pumped Storage Power Plants Based on Multi-Dimensional Regulation and Leader-Follower Decision-Making," Energies, MDPI, vol. 15(16), pages 1-15, August.
    4. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    5. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.
    6. Yanyue Wang & Guohua Fang, 2022. "Joint Operation Modes and Economic Analysis of Nuclear Power and Pumped Storage Plants under Different Power Market Environments," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    7. Waseem, Muhammad & Lin, Zhenzhi & Liu, Shengyuan & Zhang, Zhi & Aziz, Tarique & Khan, Danish, 2021. "Fuzzy compromised solution-based novel home appliances scheduling and demand response with optimal dispatch of distributed energy resources," Applied Energy, Elsevier, vol. 290(C).
    8. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    9. Zhang, Pengfei & Ma, Chao & Lian, Jijian & Li, Peiyao & Liu, Lu, 2024. "Medium- and long-term operation optimization of the LCHES-WP hybrid power system considering the settlement rules of the electricity trading market," Applied Energy, Elsevier, vol. 359(C).
    10. Chennaif, Mohammed & Maaouane, Mohamed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2022. "Tri-objective techno-economic sizing optimization of Off-grid and On-grid renewable energy systems using Electric system Cascade Extended analysis and system Advisor Model," Applied Energy, Elsevier, vol. 305(C).
    11. Christiana I. Kostaki & Pantelis A. Dratsas & Georgios N. Psarros & Evangelos S. Chatzistylianos & Stavros A. Papathanassiou, 2024. "A Novel Method to Integrate Hydropower Plants into Resource Adequacy Assessment Studies," Energies, MDPI, vol. 17(17), pages 1-22, August.
    12. Shyam, B. & Kanakasabapathy, P., 2022. "Feasibility of floating solar PV integrated pumped storage system for a grid-connected microgrid under static time of day tariff environment: A case study from India," Renewable Energy, Elsevier, vol. 192(C), pages 200-215.
    13. Tan, Qiaofeng & Nie, Zhuang & Wen, Xin & Su, Huaying & Fang, Guohua & Zhang, Ziyi, 2024. "Complementary scheduling rules for hybrid pumped storage hydropower-photovoltaic power system reconstructing from conventional cascade hydropower stations," Applied Energy, Elsevier, vol. 355(C).
    14. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Sadeghi, Delnia & Ahmadi, Seyed Ehsan & Amiri, Nima & Satinder, & Marzband, Mousa & Abusorrah, Abdullah & Rawa, Muhyaddin, 2022. "Designing, optimizing and comparing distributed generation technologies as a substitute system for reducing life cycle costs, CO2 emissions, and power losses in residential buildings," Energy, Elsevier, vol. 253(C).
    16. Zhang, Bo & Qiu, Rui & Liao, Qi & Liang, Yongtu & Ji, Haoran & Jing, Rui, 2022. "Design and operation optimization of city-level off-grid hydro–photovoltaic complementary system," Applied Energy, Elsevier, vol. 306(PB).
    17. Takele Ferede Agajie & Armand Fopah-Lele & Isaac Amoussou & Ahmed Ali & Baseem Khan & Om Prakash Mahela & Ramakrishna S. S. Nuvvula & Divine Khan Ngwashi & Emmanuel Soriano Flores & Emmanuel Tanyi, 2023. "Techno-Economic Analysis and Optimization of Hybrid Renewable Energy System with Energy Storage under Two Operational Modes," Sustainability, MDPI, vol. 15(15), pages 1-31, July.
    18. Daniel Akinyele & Abraham Amole & Elijah Olabode & Ayobami Olusesi & Titus Ajewole, 2021. "Simulation and Analysis Approaches to Microgrid Systems Design: Emerging Trends and Sustainability Framework Application," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
    19. Shabani, Masoume & Wallin, Fredrik & Dahlquist, Erik & Yan, Jinyue, 2022. "Techno-economic assessment of battery storage integrated into a grid-connected and solar-powered residential building under different battery ageing models," Applied Energy, Elsevier, vol. 318(C).
    20. Armin Razmjoo & Arezoo Ghazanfari & Poul Alberg Østergaard & Mehdi Jahangiri & Andreas Sumper & Sahar Ahmadzadeh & Reza Eslamipoor, 2024. "Moving Toward the Expansion of Energy Storage Systems in Renewable Energy Systems—A Techno-Institutional Investigation with Artificial Intelligence Consideration," Sustainability, MDPI, vol. 16(22), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1936-:d:1378287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.