IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7414-d1273352.html
   My bibliography  Save this article

Performance Assessment and Analysis of a 1 MW Three-Phase Photovoltaic Power Station Connected to a Factory’s Electrical Grid in Morocco

Author

Listed:
  • Halim Eddahbi

    (Laboratory of Energy and Electrical Systems, National School of Electricity and Mechanics, Hassan II University, Casablanca 8118, Morocco)

  • Loubna Benaaouinate

    (Laboratory of Energy and Electrical Systems, National School of Electricity and Mechanics, Hassan II University, Casablanca 8118, Morocco)

  • Mohamed Khafallah

    (Laboratory of Energy and Electrical Systems, National School of Electricity and Mechanics, Hassan II University, Casablanca 8118, Morocco)

  • Aziz El Afia

    (Laboratory of Complex Cyber Physical Systems, National School of Arts and Crafts, Hassan II University, Casablanca 20670, Morocco)

Abstract

In this study, a performance assessment and analysis of a 1 MW three-phase photovoltaic (PV) power station connected to the electrical grid of a factory in Morocco are presented. The main objective of this research is to assess the performance of the PV power station and analyze its efficiency, energy generation, and operational characteristics. To accomplish this, a combination of field measurements, data analysis, and simulation techniques are used. The study begins by providing an extensive overview of the PV power station, including a thorough description of its main elements such as solar panels, inverters, transformers, and grid interconnection infrastructure. Furthermore, field measurements are conducted to collect data on solar irradiance, ambient temperature, and PV system power, as well as electrical parameters such as voltage, current, and power factor. The findings of this study provide valuable insights into the performance and economic viability of the PV power station. These insights can serve as guidance for renewable energy stakeholders, investors, and policymakers, facilitating the development of sustainable solar energy projects and contributing to renewable energy targets.

Suggested Citation

  • Halim Eddahbi & Loubna Benaaouinate & Mohamed Khafallah & Aziz El Afia, 2023. "Performance Assessment and Analysis of a 1 MW Three-Phase Photovoltaic Power Station Connected to a Factory’s Electrical Grid in Morocco," Energies, MDPI, vol. 16(21), pages 1-28, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7414-:d:1273352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7414/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7414/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Spertino, Filippo & Corona, Fabio, 2013. "Monitoring and checking of performance in photovoltaic plants: A tool for design, installation and maintenance of grid-connected systems," Renewable Energy, Elsevier, vol. 60(C), pages 722-732.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    2. Milosavljević, Dragana D. & Pavlović, Tomislav M. & Piršl, Danica S., 2015. "Performance analysis of A grid-connected solar PV plant in Niš, republic of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 423-435.
    3. Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, vol. 11(12), pages 1-26, December.
    4. Wang, Derek D. & Sueyoshi, Toshiyuki, 2017. "Assessment of large commercial rooftop photovoltaic system installations: Evidence from California," Applied Energy, Elsevier, vol. 188(C), pages 45-55.
    5. Mellit, A. & Benghanem, M. & Kalogirou, S. & Massi Pavan, A., 2023. "An embedded system for remote monitoring and fault diagnosis of photovoltaic arrays using machine learning and the internet of things," Renewable Energy, Elsevier, vol. 208(C), pages 399-408.
    6. Francesco Castellani & Abdelgalil Eltayesh & Francesco Natili & Tommaso Tocci & Matteo Becchetti & Lorenzo Capponi & Davide Astolfi & Gianluca Rossi, 2021. "Wind Flow Characterisation over a PV Module through URANS Simulations and Wind Tunnel Optical Flow Methods," Energies, MDPI, vol. 14(20), pages 1-21, October.
    7. Roy, Swapna & Ghosh, Biswajit, 2017. "Land utilization performance of ground mounted photovoltaic power plants: A case study," Renewable Energy, Elsevier, vol. 114(PB), pages 1238-1246.
    8. Leonard, Matthew D. & Michaelides, Efstathios E., 2018. "Grid-independent residential buildings with renewable energy sources," Energy, Elsevier, vol. 148(C), pages 448-460.
    9. Evert Reins, 2021. "Seductive subsidies? An analysis of second-degree moral hazard in the context of photovoltaic solar systems," IRENE Working Papers 21-03, IRENE Institute of Economic Research.
    10. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Sadeghi, Zeinolabedin, 2017. "Solar photovoltaic power plants in five top oil-producing countries in Middle East: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1271-1280.
    11. Mpholo, Moeketsi & Nchaba, Teboho & Monese, Molebatsi, 2015. "Yield and performance analysis of the first grid-connected solar farm at Moshoeshoe I International Airport, Lesotho," Renewable Energy, Elsevier, vol. 81(C), pages 845-852.
    12. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
    13. Luís G. Monteiro & Wilson N. Macedo & Pedro F. Torres & Márcio M. Silva & Guilherme Amaral & Alexandre S. Piterman & Bruno M. Lopes & Juliano M. Fraga & Wallace C. Boaventura, 2017. "One-Year Monitoring PV Power Plant Installed on Rooftop of Mineirão Fifa World Cup/Olympics Football Stadium," Energies, MDPI, vol. 10(2), pages 1-23, February.
    14. Gianfranco Chicco & Valeria Cocina & Paolo Di Leo & Filippo Spertino & Alessandro Massi Pavan, 2015. "Error Assessment of Solar Irradiance Forecasts and AC Power from Energy Conversion Model in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 9(1), pages 1-27, December.
    15. Hetita, Ibrahim & Zalhaf, Amr S. & Mansour, Diaa-Eldin A. & Han, Yang & Yang, Ping & Wang, Congling, 2022. "Modeling and protection of photovoltaic systems during lightning strikes: A review," Renewable Energy, Elsevier, vol. 184(C), pages 134-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7414-:d:1273352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.