IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7300-d1269047.html
   My bibliography  Save this article

Sizing PV and BESS for Grid-Connected Microgrid Resilience: A Data-Driven Hybrid Optimization Approach

Author

Listed:
  • Mahtab Murshed

    (Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA)

  • Manohar Chamana

    (Renewable Energy Program, Texas Tech University, Lubbock, TX 79409, USA)

  • Konrad Erich Kork Schmitt

    (Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA)

  • Suhas Pol

    (Renewable Energy Program, Texas Tech University, Lubbock, TX 79409, USA)

  • Olatunji Adeyanju

    (Renewable Energy Program, Texas Tech University, Lubbock, TX 79409, USA)

  • Stephen Bayne

    (Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA)

Abstract

This article presents a comprehensive data-driven approach on enhancing grid-connected microgrid grid resilience through advanced forecasting and optimization techniques in the context of power outages. Power outages pose significant challenges to modern societies, affecting various sectors such as industries, households, and critical infrastructures. The research combines statistical analysis, machine-learning algorithms, and optimization methods to address this issue to develop a holistic approach for predicting and mitigating power outage events. The proposed methodology involves the use of Monte Carlo simulations in MATLAB for future outage prediction, training a Long Short-Term Memory (LSTM) network for forecasting solar irradiance and load profiles with a dataset spanning from 2009 to 2018, and a hybrid LSTM-Particle Swarm Optimization (PSO) model to improve accuracy. Furthermore, the role of battery state of charge (SoC) in enhancing system resilience is explored. The study also assesses the techno-economic advantages of a grid-tied microgrid integrated with solar panels and batteries over conventional grid systems. The proposed methodology and optimization process demonstrate their versatility and applicability to a wide range of microgrid design scenarios comprising solar PV and battery energy storage systems (BESS), making them a valuable resource for enhancing grid resilience and economic efficiency across diverse settings. The results highlight the potential of the proposed approach in strengthening grid resilience by improving autonomy, reducing downtime by 25%, and fostering sustainable energy utilization by 82%.

Suggested Citation

  • Mahtab Murshed & Manohar Chamana & Konrad Erich Kork Schmitt & Suhas Pol & Olatunji Adeyanju & Stephen Bayne, 2023. "Sizing PV and BESS for Grid-Connected Microgrid Resilience: A Data-Driven Hybrid Optimization Approach," Energies, MDPI, vol. 16(21), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7300-:d:1269047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7300/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    2. Bo Gu & Xi Li & Fengliang Xu & Xiaopeng Yang & Fayi Wang & Pengzhan Wang, 2023. "Forecasting and Uncertainty Analysis of Day-Ahead Photovoltaic Power Based on WT-CNN-BiLSTM-AM-GMM," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    3. Gu, Bo & Shen, Huiqiang & Lei, Xiaohui & Hu, Hao & Liu, Xinyu, 2021. "Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method," Applied Energy, Elsevier, vol. 299(C).
    4. Mulleriyawage, U.G.K. & Shen, W.X., 2020. "Optimally sizing of battery energy storage capacity by operational optimization of residential PV-Battery systems: An Australian household case study," Renewable Energy, Elsevier, vol. 160(C), pages 852-864.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingyuan Yan & Xunxun Chen & Ling Xing & Xinyu Guo & Chenchen Zhu, 2024. "Multi-Timescale Voltage Regulation for Distribution Network with High Photovoltaic Penetration via Coordinated Control of Multiple Devices," Energies, MDPI, vol. 17(15), pages 1-36, August.
    2. Zhi, Yuan & Yang, Xudong, 2023. "Scenario-based multi-objective optimization strategy for rural PV-battery systems," Applied Energy, Elsevier, vol. 345(C).
    3. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Lu, Jia & Cheng, Chuntian, 2023. "Short-term coordinated hybrid hydro-wind-solar optimal scheduling model considering multistage section restrictions," Renewable Energy, Elsevier, vol. 217(C).
    5. Svetlana Drobyazko & Suparna Wijaya & Pavel Blecharz & Sergii Bogachov & Milyausha Pinskaya, 2021. "Modeling of Prospects for the Development of Regional Renewable Energy," Energies, MDPI, vol. 14(8), pages 1-17, April.
    6. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    7. Jagdesh Kumar & Chethan Parthasarathy & Mikko Västi & Hannu Laaksonen & Miadreza Shafie-Khah & Kimmo Kauhaniemi, 2020. "Sizing and Allocation of Battery Energy Storage Systems in Åland Islands for Large-Scale Integration of Renewables and Electric Ferry Charging Stations," Energies, MDPI, vol. 13(2), pages 1-23, January.
    8. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    9. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Forecasting error processing techniques and frequency domain decomposition for forecasting error compensation and renewable energy firming in hybrid systems," Applied Energy, Elsevier, vol. 313(C).
    10. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
    11. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    12. Ilman Sulaeman & Gautham Ram Chandra Mouli & Aditya Shekhar & Pavol Bauer, 2021. "Comparison of AC and DC Nanogrid for Office Buildings with EV Charging, PV and Battery Storage," Energies, MDPI, vol. 14(18), pages 1-22, September.
    13. Yu, Min & Niu, Dongxiao & Wang, Keke & Du, Ruoyun & Yu, Xiaoyu & Sun, Lijie & Wang, Feiran, 2023. "Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification," Energy, Elsevier, vol. 275(C).
    14. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    15. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    16. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    17. Manzano, J.M. & Salvador, J.R. & Romaine, J.B. & Alvarado-Barrios, L., 2022. "Economic predictive control for isolated microgrids based on real world demand/renewable energy data and forecast errors," Renewable Energy, Elsevier, vol. 194(C), pages 647-658.
    18. Jiyoung Eum & Yongki Kim, 2020. "Analysis on Operation Modes of Residential BESS with Balcony-PV for Apartment Houses in Korea," Sustainability, MDPI, vol. 13(1), pages 1-9, December.
    19. Nicola Blasuttigh & Simone Negri & Alessandro Massi Pavan & Enrico Tironi, 2023. "Optimal Sizing and Environ-Economic Analysis of PV-BESS Systems for Jointly Acting Renewable Self-Consumers," Energies, MDPI, vol. 16(3), pages 1-25, January.
    20. McIlwaine, Neil & Foley, Aoife M. & Best, Robert & Morrow, D. John & Kez, Dlzar Al, 2023. "Modelling the effect of distributed battery energy storage in an isolated power system," Energy, Elsevier, vol. 263(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7300-:d:1269047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.