IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3830-d1449148.html
   My bibliography  Save this article

Multi-Timescale Voltage Regulation for Distribution Network with High Photovoltaic Penetration via Coordinated Control of Multiple Devices

Author

Listed:
  • Qingyuan Yan

    (College of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China)

  • Xunxun Chen

    (College of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China)

  • Ling Xing

    (College of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China)

  • Xinyu Guo

    (Zhifang Design Co., Ltd., Nanjing 210014, China)

  • Chenchen Zhu

    (State Grid Taizhou Electric Power Co., Ltd., Taizhou 310007, China)

Abstract

The high penetration of distributed photovoltaics (PV) in distribution networks (DNs) results in voltage violations, imbalances, and flickers, leading to significant disruptions in DN stability. To address this issue, this paper proposes a multi-timescale voltage regulation approach that involves the coordinated control of a step voltage regulator (SVR), switched capacitor (SC), battery energy storage system (BESS), and electric vehicle (EV) across different timescales. During the day-ahead stage, the proposed method utilizes artificial hummingbird algorithm optimization-based least squares support vector machine (AHA-LSSVM) forecasting to predict the PV output, enabling the formulation of a day-ahead schedule for SVR and SC adjustments to maintain the voltage and voltage unbalance factor (VUF) within the limits. In the intra-day stage, a novel floating voltage threshold band (FVTB) control strategy is introduced to refine the day-ahead schedule, enhancing the voltage quality while reducing the erratic operation of SVR and SC under dead band control. For real-time operation, the African vulture optimization algorithm (AVOA) is employed to optimize the BESS output for precise voltage regulation. Additionally, a novel smoothing fluctuation threshold band (SFTB) control strategy and an initiate charging and discharging strategy (ICD) for the BESS are proposed to effectively smooth voltage fluctuations and expand the BESS capacity. To enhance user-side participation and optimize the BESS capacity curtailment, some BESSs are replaced by EVs for voltage regulation. Finally, a simulation conducted on a modified IEEE 33 system validates the efficacy of the proposed voltage regulation strategy.

Suggested Citation

  • Qingyuan Yan & Xunxun Chen & Ling Xing & Xinyu Guo & Chenchen Zhu, 2024. "Multi-Timescale Voltage Regulation for Distribution Network with High Photovoltaic Penetration via Coordinated Control of Multiple Devices," Energies, MDPI, vol. 17(15), pages 1-36, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3830-:d:1449148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gu, Bo & Shen, Huiqiang & Lei, Xiaohui & Hu, Hao & Liu, Xinyu, 2021. "Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method," Applied Energy, Elsevier, vol. 299(C).
    2. Bo Gu & Xi Li & Fengliang Xu & Xiaopeng Yang & Fayi Wang & Pengzhan Wang, 2023. "Forecasting and Uncertainty Analysis of Day-Ahead Photovoltaic Power Based on WT-CNN-BiLSTM-AM-GMM," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahtab Murshed & Manohar Chamana & Konrad Erich Kork Schmitt & Suhas Pol & Olatunji Adeyanju & Stephen Bayne, 2023. "Sizing PV and BESS for Grid-Connected Microgrid Resilience: A Data-Driven Hybrid Optimization Approach," Energies, MDPI, vol. 16(21), pages 1-22, October.
    2. Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Lu, Jia & Cheng, Chuntian, 2023. "Short-term coordinated hybrid hydro-wind-solar optimal scheduling model considering multistage section restrictions," Renewable Energy, Elsevier, vol. 217(C).
    3. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
    4. Yu, Min & Niu, Dongxiao & Wang, Keke & Du, Ruoyun & Yu, Xiaoyu & Sun, Lijie & Wang, Feiran, 2023. "Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification," Energy, Elsevier, vol. 275(C).
    5. Zhengwei Huang & Jin Huang & Jintao Min, 2022. "SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching," Energies, MDPI, vol. 15(20), pages 1-16, October.
    6. Zhiwei Liao & Wenlong Min & Chengjin Li & Bowen Wang, 2024. "Photovoltaic Power Prediction Based on Irradiation Interval Distribution and Transformer-LSTM," Energies, MDPI, vol. 17(12), pages 1-17, June.
    7. Hong Wu & Haipeng Liu & Huaiping Jin & Yanping He, 2024. "Ultra-Short-Term Photovoltaic Power Prediction by NRGA-BiLSTM Considering Seasonality and Periodicity of Data," Energies, MDPI, vol. 17(18), pages 1-19, September.
    8. Cui, Shuhui & Lyu, Shouping & Ma, Yongzhi & Wang, Kai, 2024. "Improved informer PV power short-term prediction model based on weather typing and AHA-VMD-MPE," Energy, Elsevier, vol. 307(C).
    9. Kaiyan Wang & Haodong Du & Rong Jia & Hongtao Jia, 2022. "Performance Comparison of Bayesian Deep Learning Model and Traditional Bayesian Neural Network in Short-Term PV Interval Prediction," Sustainability, MDPI, vol. 14(19), pages 1-27, October.
    10. Xin Yan & Qian Zhang, 2023. "Research on Combination of Distributed Generation Placement and Dynamic Distribution Network Reconfiguration Based on MIBWOA," Sustainability, MDPI, vol. 15(12), pages 1-34, June.
    11. Zhi, Yuan & Yang, Xudong, 2023. "Scenario-based multi-objective optimization strategy for rural PV-battery systems," Applied Energy, Elsevier, vol. 345(C).
    12. Zhang, Xinru & Hou, Lei & Liu, Jiaquan & Yang, Kai & Chai, Chong & Li, Yanhao & He, Sichen, 2022. "Energy consumption prediction for crude oil pipelines based on integrating mechanism analysis and data mining," Energy, Elsevier, vol. 254(PB).
    13. Pan, Mingzhang & Fu, Changcheng & Cao, Xinxin & Guan, Wei & Liang, Lu & Li, Ding & Gu, Jinkai & Tan, Dongli & Zhang, Zhiqing & Man, Xingjia & Ye, Nianye & Qin, Haifeng, 2024. "An energy management strategy for fuel cell hybrid electric vehicle based on HHO-BiLSTM-TCN-self attention speed prediction," Energy, Elsevier, vol. 307(C).
    14. Wang, Hu & Mao, Lei & Zhang, Heng & Wu, Qiang, 2024. "Multi-prediction of electric load and photovoltaic solar power in grid-connected photovoltaic system using state transition method," Applied Energy, Elsevier, vol. 353(PB).
    15. Liu, Yang & Sun, Kangwen & Xu, Ziyuan & Lv, Mingyun, 2022. "Energy efficiency assessment of photovoltaic array on the stratospheric airship under partial shading conditions," Applied Energy, Elsevier, vol. 325(C).
    16. liu, Qian & li, Yulin & jiang, Hang & chen, Yilin & zhang, Jiang, 2024. "Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks," Energy, Elsevier, vol. 286(C).
    17. Bo Gu & Xi Li & Fengliang Xu & Xiaopeng Yang & Fayi Wang & Pengzhan Wang, 2023. "Forecasting and Uncertainty Analysis of Day-Ahead Photovoltaic Power Based on WT-CNN-BiLSTM-AM-GMM," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    18. Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).
    19. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    20. Ye, Lin & Li, Yilin & Pei, Ming & Zhao, Yongning & Li, Zhuo & Lu, Peng, 2022. "A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3830-:d:1449148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.