Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xiaogang Wu & Zhe Chen & Zhiyang Wang, 2017. "Analysis of Low Temperature Preheating Effect Based on Battery Temperature-Rise Model," Energies, MDPI, vol. 10(8), pages 1-15, August.
- Zhenhua Cui & Jiyong Dai & Jianrui Sun & Dezhi Li & Licheng Wang & Kai Wang & A. M. Bastos Pereira, 2022. "Hybrid Methods Using Neural Network and Kalman Filter for the State of Charge Estimation of Lithium-Ion Battery," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-11, May.
- Jiang, Jiuchun & Ruan, Haijun & Sun, Bingxiang & Zhang, Weige & Gao, Wenzhong & Wang, Le Yi & Zhang, Linjing, 2016. "A reduced low-temperature electro-thermal coupled model for lithium-ion batteries," Applied Energy, Elsevier, vol. 177(C), pages 804-816.
- Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
- Ruan, Haijun & Jiang, Jiuchun & Sun, Bingxiang & Zhang, Weige & Gao, Wenzhong & Wang, Le Yi & Ma, Zeyu, 2016. "A rapid low-temperature internal heating strategy with optimal frequency based on constant polarization voltage for lithium-ion batteries," Applied Energy, Elsevier, vol. 177(C), pages 771-782.
- Zhu, Jiangong & Knapp, Michael & Darma, Mariyam Susana Dewi & Fang, Qiaohua & Wang, Xueyuan & Dai, Haifeng & Wei, Xuezhe & Ehrenberg, Helmut, 2019. "An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application," Applied Energy, Elsevier, vol. 248(C), pages 149-161.
- Ruan, Haijun & Jiang, Jiuchun & Sun, Bingxiang & Su, Xiaojia & He, Xitian & Zhao, Kejie, 2019. "An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction," Applied Energy, Elsevier, vol. 256(C).
- Wang, Yujie & Zhang, Xingchen & Chen, Zonghai, 2022. "Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges," Applied Energy, Elsevier, vol. 313(C).
- Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Jiang, Jiuchun & Ruan, Haijun & Sun, Bingxiang & Wang, Leyi & Gao, Wenzhong & Zhang, Weige, 2018. "A low-temperature internal heating strategy without lifetime reduction for large-size automotive lithium-ion battery pack," Applied Energy, Elsevier, vol. 230(C), pages 257-266.
- Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jian, Jiting & Zhang, Zeping & Wang, Shixue & Gong, Jinke, 2023. "Analysis of control strategies in alternating current preheating of lithium-ion cell," Applied Energy, Elsevier, vol. 333(C).
- Ghassemi, Alireza & Hollenkamp, Anthony F. & Chakraborty Banerjee, Parama & Bahrani, Behrooz, 2022. "Impact of high-amplitude alternating current on LiFePO4 battery life performance: Investigation of AC-preheating and microcycling effects," Applied Energy, Elsevier, vol. 314(C).
- Wang, Yujie & Zhang, Xingchen & Chen, Zonghai, 2022. "Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges," Applied Energy, Elsevier, vol. 313(C).
- Cai, Fengyang & Chang, Huawei & Yang, Zhengbo & Tu, Zhengkai, 2024. "Experimental study on self-heating strategy of lithium-ion battery at low temperatures based on bidirectional pulse current," Applied Energy, Elsevier, vol. 354(PB).
- Jiang, Jiuchun & Ruan, Haijun & Sun, Bingxiang & Wang, Leyi & Gao, Wenzhong & Zhang, Weige, 2018. "A low-temperature internal heating strategy without lifetime reduction for large-size automotive lithium-ion battery pack," Applied Energy, Elsevier, vol. 230(C), pages 257-266.
- Shi, Xingyi & Li, Guangzhe & Zhang, Ruihan & Esan, Oladapo Christopher & Huo, Xiaoyu & Wu, Qixing & An, Liang, 2024. "Operation of rechargeable metal-ion batteries in low-temperature environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Qin, Yudi & Du, Jiuyu & Lu, Languang & Gao, Ming & Haase, Frank & Li, Jianqiu & Ouyang, Minggao, 2020. "A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life," Applied Energy, Elsevier, vol. 280(C).
- Qin, Yudi & Xu, Zhoucheng & Xiao, Shengran & Gao, Ming & Bai, Jian & Liebig, Dorothea & Lu, Languang & Han, Xuebing & Li, Yalun & Du, Jiuyu & Ouyang, Minggao, 2023. "Temperature consistency–oriented rapid heating strategy combining pulsed operation and external thermal management for lithium-ion batteries," Applied Energy, Elsevier, vol. 335(C).
- Lu, Fenglian & Chen, Weiye & Hu, Shuzhi & Chen, Lei & Sharshir, Swellam W. & Dong, Chuanshuai & Zhang, Lizhi, 2024. "Achieving a smart thermal management for lithium-ion batteries by electrically-controlled crystallization of supercooled calcium chloride hexahydrate solution," Applied Energy, Elsevier, vol. 364(C).
- Guo, Shanshan & Yang, Ruixin & Shen, Weixiang & Liu, Yongsheng & Guo, Shenggang, 2022. "DC-AC hybrid rapid heating method for lithium-ion batteries at high state of charge operated from low temperatures," Energy, Elsevier, vol. 238(PB).
- Li, Junqiu & Xue, Qiao & Gao, Zhuo & Liu, Zengcheng & Xiao, Yansheng, 2024. "Frequency varying heating strategy for lithium-ion battery rapid preheating under subzero temperature considering the limitation of on-board current," Applied Energy, Elsevier, vol. 365(C).
- Hou, Jie & Liu, Jiawei & Chen, Fengwei & Li, Penghua & Zhang, Tao & Jiang, Jincheng & Chen, Xiaolei, 2023. "Robust lithium-ion state-of-charge and battery parameters joint estimation based on an enhanced adaptive unscented Kalman filter," Energy, Elsevier, vol. 271(C).
- Tang, Aihua & Gong, Peng & Huang, Yukun & Xiong, Rui & Hu, Yuanzhi & Feng, Renhua, 2024. "Orthogonal design based pulse preheating strategy for cold lithium-ion batteries," Applied Energy, Elsevier, vol. 355(C).
- Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2022. "Self-powered heating strategy for lithium-ion battery pack applied in extremely cold climates," Energy, Elsevier, vol. 239(PB).
- Ruan, Haijun & Jiang, Jiuchun & Sun, Bingxiang & Su, Xiaojia & He, Xitian & Zhao, Kejie, 2019. "An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction," Applied Energy, Elsevier, vol. 256(C).
- Cheng, Gong & Wang, Zhangzhou & Wang, Xinzhi & He, Yurong, 2022. "All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity," Applied Energy, Elsevier, vol. 322(C).
- Borui Wang & Mingyin Yan, 2023. "Research on the Improvement of Lithium-Ion Battery Performance at Low Temperatures Based on Electromagnetic Induction Heating Technology," Energies, MDPI, vol. 16(23), pages 1-24, November.
- Guo, Shanshan & Xiong, Rui & Wang, Kan & Sun, Fengchun, 2018. "A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 219(C), pages 256-263.
- Xiong, Rui & Li, Zhengyang & Yang, Ruixin & Shen, Weixiang & Ma, Suxiao & Sun, Fengchun, 2022. "Fast self-heating battery with anti-aging awareness for freezing climates application," Applied Energy, Elsevier, vol. 324(C).
- Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
More about this item
Keywords
lithium-ion battery; low temperature; charging; discharging; modeling; heating;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7142-:d:1262701. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.