IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7076-d1259013.html
   My bibliography  Save this article

Hybrid Optical and Thermal Energy Conversion System to Power Internet of Things Nodes

Author

Listed:
  • Bogdan Dziadak

    (Electrical Engineering Department, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland)

Abstract

This article presents research about a hybrid power system dedicated to Internet of Things (IoT) nodes. As an introduction, performance tests of the harvesters, that is, a 40 × 40 mm Peltier cell based on Bi 2 Te 3 and three solar cells, monocrystalline, polycrystalline, and amorphous, are presented. The study established the dependence of the effect of generated power on the load resistance. Thus, it states how the internal resistance of the harvesters changes. Following the above tests, a complete power unit with a single harvester and an LTC3108 conversion circuit, as well as an energy buffer in the form of a 1 mF supercapacitor, were built and tested. The unit with a thermoelectric generator generated power from 14 to 409 µW. The unit with a 65 × 65 mm polycrystalline cell generated power from 150 to 409 µW. Next, a hybrid system was built and tested with both of the aforementioned harvesters, which generated power from 205 to 450 µW at 2000 lx illumination and a temperature difference of 20 °C for the thermoelectric generator claddings.

Suggested Citation

  • Bogdan Dziadak, 2023. "Hybrid Optical and Thermal Energy Conversion System to Power Internet of Things Nodes," Energies, MDPI, vol. 16(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7076-:d:1259013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana Lavalle & Miguel A. Teruel & Alejandro Maté & Juan Trujillo, 2020. "Improving Sustainability of Smart Cities through Visualization Techniques for Big Data from IoT Devices," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    2. Pourkiaei, Seyed Mohsen & Ahmadi, Mohammad Hossein & Sadeghzadeh, Milad & Moosavi, Soroush & Pourfayaz, Fathollah & Chen, Lingen & Pour Yazdi, Mohammad Arab & Kumar, Ravinder, 2019. "Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials," Energy, Elsevier, vol. 186(C).
    3. Bogdan Dziadak & Łukasz Makowski & Mariusz Kucharek & Adam Jóśko, 2023. "Energy Harvesting for Wearable Sensors and Body Area Network Nodes," Energies, MDPI, vol. 16(4), pages 1-30, February.
    4. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    5. Bogdan Dziadak & Mariusz Kucharek & Jacek Starzyński, 2022. "Powering the WSN Node for Monitoring Rail Car Parameters, Using a Piezoelectric Energy Harvester," Energies, MDPI, vol. 15(5), pages 1-18, February.
    6. De Rossi, Francesca & Pontecorvo, Tadeo & Brown, Thomas M., 2015. "Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting," Applied Energy, Elsevier, vol. 156(C), pages 413-422.
    7. Loise Rissini Kramer & Anderson Luis Oliveira Maran & Samara Silva de Souza & Oswaldo Hideo Ando Junior, 2019. "Analytical and Numerical Study for the Determination of a Thermoelectric Generator’s Internal Resistance," Energies, MDPI, vol. 12(16), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Dziurdzia & Piotr Bratek & Michał Markiewicz, 2023. "An Efficient Electrothermal Model of a Thermoelectric Converter for a Thermal Energy Harvesting Process Simulation and Electronic Circuits Powering," Energies, MDPI, vol. 17(1), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
    2. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "The potential benefits of surface corrugation and hybrid nanofluids in channel flow on the performance enhancement of a thermo-electric module in energy systems," Energy, Elsevier, vol. 213(C).
    3. Zhao, Tingting & Jiang, Weitao & Niu, Dong & Liu, Hongzhong & Chen, Bangdao & Shi, Yongsheng & Yin, Lei & Lu, Bingheng, 2017. "Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor," Applied Energy, Elsevier, vol. 195(C), pages 754-760.
    4. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    5. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    6. Ares de Parga-Regalado, A.M. & Ramírez-Moreno, M.A. & Angulo-Brown, F., 2023. "A comparative thermodynamic and thermoeconomic analysis between two ecological regimes for the Novikov energy converter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    7. Chen, Qian & Oh, Seung Jin & Burhan, Muhammad, 2020. "Design and optimization of a novel electrowetting-driven solar-indoor lighting system," Applied Energy, Elsevier, vol. 269(C).
    8. Jakub Szut & Paweł Piątek & Mariusz Pauluk, 2024. "RF Energy Harvesting," Energies, MDPI, vol. 17(5), pages 1-15, March.
    9. Cannavale, Alessandro & Ierardi, Laura & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Improving energy and visual performance in offices using building integrated perovskite-based solar cells: A case study in Southern Italy," Applied Energy, Elsevier, vol. 205(C), pages 834-846.
    10. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    11. Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
    12. Russo, Johnny & Ray, William & Litz, Marc S., 2017. "Low light illumination study on commercially available homojunction photovoltaic cells," Applied Energy, Elsevier, vol. 191(C), pages 10-21.
    13. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    14. Liu, Haowen & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli & Shen, Chao, 2023. "Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler," Energy, Elsevier, vol. 267(C).
    15. Beltrán-Pitarch, Braulio & Maassen, Jesse & García-Cañadas, Jorge, 2021. "Comprehensive impedance spectroscopy equivalent circuit of a thermoelectric device which includes the internal thermal contact resistances," Applied Energy, Elsevier, vol. 299(C).
    16. N. Kanagaraj & Hegazy Rezk & Mohamed R. Gomaa, 2020. "A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator," Energies, MDPI, vol. 13(17), pages 1-18, September.
    17. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2021. "Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system," Energy, Elsevier, vol. 220(C).
    18. Zhaochun Shi & Guohua Wang & Chunli Liu & Qiang Lv & Baoli Gong & Yingchao Zhang & Yuying Yan, 2023. "Optimizing the Transient Performance of Thermoelectric Generator with PCM by Taguchi Method," Energies, MDPI, vol. 16(2), pages 1-16, January.
    19. Mohammed Abdul-Rahman & Mayowa I. Adegoriola & Wilson Kodwo McWilson & Oluwole Soyinka & Yusuf A. Adenle, 2023. "Novel Use of Social Media Big Data and Artificial Intelligence for Community Resilience Assessment (CRA) in University Towns," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    20. Chen, Zhi-Hui & Qiao, Na & Wang, Yang & Liang, Li & Yang, Yibiao & Ye, Han & Liu, Shaoding, 2016. "Efficient broadband energy absorption based on inverted-pyramid photonic crystal surface and two-dimensional randomly patterned metallic reflector," Applied Energy, Elsevier, vol. 172(C), pages 59-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7076-:d:1259013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.