IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2539-d1401124.html
   My bibliography  Save this article

Real-Time Load Forecasting and Adaptive Control in Smart Grids Using a Hybrid Neuro-Fuzzy Approach

Author

Listed:
  • Fangzong Wang

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Zuhaib Nishtar

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

Abstract

The transition to smart grids is revolutionizing the management and distribution of electrical energy. Nowadays, power systems must precisely estimate real-time loads and use adaptive regulation to operate in the era of sustainable energy. To address these issues, this paper presents a new approach—a hybrid neuro-fuzzy system—that combines neural networks with fuzzy logic. We use neural networks’ adaptability to describe complex load patterns and fuzzy logic’s interpretability to fine-tune control techniques in our approach. Our improved load forecasting system can now respond to changes in real-time due to the combination of these two powerful methodologies. Developing, training, and implementing the forecasting and control system are detailed in this article, which also explores the theoretical underpinnings of our hybrid neuro-fuzzy approach. We demonstrate how the technology improves grid stability and the accuracy of load forecasts by using adaptive control methods. Furthermore, comprehensive simulations confirm the proposed technology, showcasing its smooth integration with smart grid infrastructure. Better energy management is just the beginning of what our method can accomplish; it also paves the way for a more sustainable energy future that is easier on the planet and its inhabitants. In conclusion, this study’s innovative approach to adaptive control and real-time load forecasting advances smart grid technology, which, in turn, improves sustainability and energy efficiency.

Suggested Citation

  • Fangzong Wang & Zuhaib Nishtar, 2024. "Real-Time Load Forecasting and Adaptive Control in Smart Grids Using a Hybrid Neuro-Fuzzy Approach," Energies, MDPI, vol. 17(11), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2539-:d:1401124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2539/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2539/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Badar ul Islam & Maria Rasheed & Shams Forruque Ahmed & Dragan PamuÄ ar, 2022. "Review of Short-Term Load Forecasting for Smart Grids Using Deep Neural Networks and Metaheuristic Methods," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-14, September.
    2. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    3. Ahmed Mazin Majid AL-Qaysi & Altug Bozkurt & Yavuz Ates, 2023. "Load Forecasting Based on Genetic Algorithm–Artificial Neural Network-Adaptive Neuro-Fuzzy Inference Systems: A Case Study in Iraq," Energies, MDPI, vol. 16(6), pages 1-20, March.
    4. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    5. Zulfiqar, M. & Kamran, M. & Rasheed, M.B. & Alquthami, T. & Milyani, A.H., 2023. "A hybrid framework for short term load forecasting with a navel feature engineering and adaptive grasshopper optimization in smart grid," Applied Energy, Elsevier, vol. 338(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    2. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Sepideh Radhoush & Bradley M. Whitaker & Hashem Nehrir, 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks," Energies, MDPI, vol. 16(16), pages 1-29, August.
    4. Omar A. Beg & Asad Ali Khan & Waqas Ur Rehman & Ali Hassan, 2023. "A Review of AI-Based Cyber-Attack Detection and Mitigation in Microgrids," Energies, MDPI, vol. 16(22), pages 1-23, November.
    5. Zheng Wan & Hui Li, 2023. "Short-Term Power Load Forecasting Based on Feature Filtering and Error Compensation under Imbalanced Samples," Energies, MDPI, vol. 16(10), pages 1-22, May.
    6. Tulin Guzel & Hakan Cinar & Mehmet Nabi Cenet & Kamil Doruk Oguz & Ahmet Yucekaya & Mustafa Hekimoglu, 2023. "A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 179-193, September.
    7. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2024. "Joint forecasting of source-load-price for integrated energy system based on multi-task learning and hybrid attention mechanism," Applied Energy, Elsevier, vol. 360(C).
    8. Jiakang Wang & Hui Liu & Guangji Zheng & Ye Li & Shi Yin, 2023. "Short-Term Load Forecasting Based on Outlier Correction, Decomposition, and Ensemble Reinforcement Learning," Energies, MDPI, vol. 16(11), pages 1-16, May.
    9. Muhammad Awais Shahid & Fiaz Ahmad & Rehan Nawaz & Saad Ullah Khan & Abdul Wadood & Hani Albalawi, 2023. "A Novel False Measurement Data Detection Mechanism for Smart Grids," Energies, MDPI, vol. 16(18), pages 1-17, September.
    10. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Ghulam Moeen Uddin & Waqar Muhammad Ashraf & Karolina Grabowska & Anna Zylka & Anna Kulakowska & Wojciech Nowak, 2023. "Artificial Intelligence for Energy Processes and Systems: Applications and Perspectives," Energies, MDPI, vol. 16(8), pages 1-12, April.
    11. Marco Bindi & Maria Cristina Piccirilli & Antonio Luchetta & Francesco Grasso, 2023. "A Comprehensive Review of Fault Diagnosis and Prognosis Techniques in High Voltage and Medium Voltage Electrical Power Lines," Energies, MDPI, vol. 16(21), pages 1-37, October.
    12. Athanasiadis, C.L. & Papadopoulos, T.A. & Kryonidis, G.C. & Doukas, D.I., 2024. "A review of distribution network applications based on smart meter data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    13. Sergiu-Mihai Hategan & Nicoleta Stefu & Marius Paulescu, 2023. "Calibration of GFS Solar Irradiation Forecasts: A Case Study in Romania," Energies, MDPI, vol. 16(11), pages 1-11, May.
    14. Zheyu He & Rongheng Lin & Budan Wu & Xin Zhao & Hua Zou, 2023. "Pre-Attention Mechanism and Convolutional Neural Network Based Multivariate Load Prediction for Demand Response," Energies, MDPI, vol. 16(8), pages 1-13, April.
    15. Liu, Yaru & Wang, Lei & Ng, Bing Feng, 2024. "A hybrid model-data-driven framework for inverse load identification of interval structures based on physics-informed neural network and improved Kalman filter algorithm," Applied Energy, Elsevier, vol. 359(C).
    16. Aydin Zaboli & Swetha Rani Kasimalla & Kuchan Park & Younggi Hong & Junho Hong, 2024. "A Comprehensive Review of Behind-the-Meter Distributed Energy Resources Load Forecasting: Models, Challenges, and Emerging Technologies," Energies, MDPI, vol. 17(11), pages 1-27, May.
    17. Bianca Magalhães & Pedro Bento & José Pombo & Maria do Rosário Calado & Sílvio Mariano, 2024. "Short-Term Load Forecasting Based on Optimized Random Forest and Optimal Feature Selection," Energies, MDPI, vol. 17(8), pages 1-21, April.
    18. Hany Habbak & Mohamed Mahmoud & Mostafa M. Fouda & Maazen Alsabaan & Ahmed Mattar & Gouda I. Salama & Khaled Metwally, 2023. "Efficient One-Class False Data Detector Based on Deep SVDD for Smart Grids," Energies, MDPI, vol. 16(20), pages 1-28, October.
    19. Yang, Yi & Xing, Qianyi & Wang, Kang & Li, Caihong & Wang, Jianzhou & Huang, Xiaojia, 2024. "A novel combined probabilistic load forecasting system integrating hybrid quantile regression and knee improved multi-objective optimization strategy," Applied Energy, Elsevier, vol. 356(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2539-:d:1401124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.