Combining Baffles and Secondary Porous Layers for Performance Enhancement of Proton Exchange Membrane Fuel Cells
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xing, Lei & Liu, Xiaoteng & Alaje, Taiwo & Kumar, Ravi & Mamlouk, Mohamed & Scott, Keith, 2014. "A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell," Energy, Elsevier, vol. 73(C), pages 618-634.
- Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
- Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Yulin & Wang, Xiaoai & Fan, Yuanzhi & He, Wei & Guan, Jinglei & Wang, Xiaodong, 2022. "Numerical Investigation of Tapered Flow Field Configurations for Enhanced Polymer Electrolyte Membrane Fuel Cell Performance," Applied Energy, Elsevier, vol. 306(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
- Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
- Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).
- Jiang, Wei & Zhang, Kai & Huang, Xing & Cai, Zhen & Zheng, Jinjin & Kai, Yue & Zheng, Bailin & Song, Ke, 2024. "Influence of clamping pressure on contact pressure uniformity and electrical output performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 353(PA).
- Yin, Cong & Gao, Yan & Li, Ting & Xie, Guangyou & Li, Kai & Tang, Hao, 2020. "Study of internal multi-parameter distributions of proton exchange membrane fuel cell with segmented cell device and coupled three-dimensional model," Renewable Energy, Elsevier, vol. 147(P1), pages 650-662.
- Hou, Yuze & Deng, Hao & Pan, Fengwen & Chen, Wenmiao & Du, Qing & Jiao, Kui, 2019. "Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
- Cai, Genchun & Liang, Yunmin & Liu, Zhichun & Liu, Wei, 2020. "Design and optimization of bio-inspired wave-like channel for a PEM fuel cell applying genetic algorithm," Energy, Elsevier, vol. 192(C).
- Chen, Hao & Guo, Hang & Ye, Fang & MA, Chong Fang, 2022. "Cell performance and flow losses of proton exchange membrane fuel cells with orientated-type flow channels," Renewable Energy, Elsevier, vol. 181(C), pages 1338-1352.
- Yin, Cong & Song, Yating & Liu, Meiru & Gao, Yan & Li, Kai & Qiao, Zemin & Tang, Hao, 2022. "Investigation of proton exchange membrane fuel cell stack with inversely phased wavy flow field design," Applied Energy, Elsevier, vol. 305(C).
- Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
- Li, Qifeng & Sun, Kai & Suo, Mengshan & Zeng, Zhen & Guan, Chengshuo & Liu, Huaiyu & Che, Zhizhao & Wang, Tianyou, 2024. "Water transport in PEMFC with metal foam flow fields: Visualization based on AI image recognition," Applied Energy, Elsevier, vol. 365(C).
- Xing, Lei & Das, Prodip K. & Song, Xueguan & Mamlouk, Mohamed & Scott, Keith, 2015. "Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity," Applied Energy, Elsevier, vol. 138(C), pages 242-257.
- Xing, Lei & Cai, Qiong & Xu, Chenxi & Liu, Chunbo & Scott, Keith & Yan, Yongsheng, 2016. "Numerical study of the effect of relative humidity and stoichiometric flow ratio on PEM (proton exchange membrane) fuel cell performance with various channel lengths: An anode partial flooding modelli," Energy, Elsevier, vol. 106(C), pages 631-645.
- Rostami, Leila & Mohamad Gholy Nejad, Puriya & Vatani, Ali, 2016. "A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells," Energy, Elsevier, vol. 97(C), pages 400-410.
- Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
- Kang, Sanggyu, 2015. "Quasi-three dimensional dynamic modeling of a proton exchange membrane fuel cell with consideration of two-phase water transport through a gas diffusion layer," Energy, Elsevier, vol. 90(P2), pages 1388-1400.
- Yin, Cong & Gao, Jianlong & Wen, Xuhui & Xie, Guangyou & Yang, Chunhua & Fang, Honglin & Tang, Hao, 2016. "In situ investigation of proton exchange membrane fuel cell performance with novel segmented cell design and a two-phase flow model," Energy, Elsevier, vol. 113(C), pages 1071-1089.
- Guo, Hang & Song, Jia & Ye, Fang & Chong Fang, M.A., 2022. "Dynamic response during mode switching of unitized regenerative fuel cells with orientational flow channels," Renewable Energy, Elsevier, vol. 188(C), pages 698-710.
- Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
More about this item
Keywords
proton-exchange membrane fuel cells; computational fluid dynamics; Forchheimer inertial effect; biporous layer; baffle geometry optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3675-:d:578449. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.