IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6425-d1233357.html
   My bibliography  Save this article

Recent Advances in the Development of Automotive Catalytic Converters: A Systematic Review

Author

Listed:
  • Laura Robles-Lorite

    (Department of Mechanical and Mining Engineering, University of Jaén, Campus las Lagunillas, s/n, 23071 Jaén, Spain)

  • Rubén Dorado-Vicente

    (Department of Mechanical and Mining Engineering, University of Jaén, Campus las Lagunillas, s/n, 23071 Jaén, Spain)

  • Eloísa Torres-Jiménez

    (Department of Mechanical and Mining Engineering, University of Jaén, Campus las Lagunillas, s/n, 23071 Jaén, Spain)

  • Gorazd Bombek

    (Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia)

  • Luka Lešnik

    (Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia)

Abstract

Despite the current boost in the use of electric vehicles to reduce the automotive sector’s footprint, combustion vehicles are and will be present in our cities in both the immediate and long term. In this sense, catalytic converters, which are exhaust gas post-treatment systems for vehicle emission control, are critical for complying with increasingly stringent environmental regulations. This work proposes a systematic review to identify the most relevant knowledge regarding the parameters (materials, geometries, and engine conditions), conditions (cold start, oxygen storage, and deactivation), and mathematical models to consider in the design of catalytic converters. The Scopus database contains 283 records related to this review’s objective. After applying the inclusion and exclusion criteria, 65 reports were retrieved for evaluation. A table was created to present the results and prepare this manuscript. The evaluation revealed that the following topics were active: the study of non-noble catalyst materials, as well as new substrate materials and geometries, for designing more compact and cost-effective catalytic converters; the development of strategies to improve conversion during cold starts; and the development of accurate and fast estimation models.

Suggested Citation

  • Laura Robles-Lorite & Rubén Dorado-Vicente & Eloísa Torres-Jiménez & Gorazd Bombek & Luka Lešnik, 2023. "Recent Advances in the Development of Automotive Catalytic Converters: A Systematic Review," Energies, MDPI, vol. 16(18), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6425-:d:1233357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agarwal, Deepak & Singh, Shrawan Kumar & Agarwal, Avinash Kumar, 2011. "Effect of Exhaust Gas Recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine," Applied Energy, Elsevier, vol. 88(8), pages 2900-2907, August.
    2. Andreas Nishikawa-Pacher, 2022. "Research Questions with PICO: A Universal Mnemonic," Publications, MDPI, vol. 10(3), pages 1-10, June.
    3. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David & Duić, Neven, 2013. "The feasibility of synthetic fuels in renewable energy systems," Energy, Elsevier, vol. 57(C), pages 76-84.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    3. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    4. Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
    5. Tadeusz Dziubak & Sebastian Dominik Dziubak, 2022. "A Study on the Effect of Inlet Air Pollution on the Engine Component Wear and Operation," Energies, MDPI, vol. 15(3), pages 1-50, February.
    6. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    7. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    8. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    9. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    10. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. José Felipe Orzuna-Orzuna & Juan Eduardo Godina-Rodríguez & Jonathan Raúl Garay-Martínez & Guillermo Reséndiz-González & Santiago Joaquín-Cancino & Alejandro Lara-Bueno, 2024. "Milk Yield, Composition, and Fatty Acid Profile in Milk of Dairy Cows Supplemented with Microalgae Schizochytrium sp.: A Meta-Analysis," Agriculture, MDPI, vol. 14(7), pages 1-13, July.
    12. Sperling, K. & Arler, F., 2020. "Local government innovation in the energy sector: A study of key actors’ strategies and arguments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    13. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
    14. Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
    15. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    16. Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
    17. Hvelplund, Frede & Djørup, Søren, 2019. "Consumer ownership, natural monopolies and transition to 100% renewable energy systems," Energy, Elsevier, vol. 181(C), pages 440-449.
    18. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2015. "Dynamic electro-thermal modeling of co-electrolysis of steam and carbon dioxide in a tubular solid oxide electrolysis cell," Energy, Elsevier, vol. 89(C), pages 637-647.
    19. Lester, Mason Scott & Bramstoft, Rasmus & Münster, Marie, 2020. "Analysis on Electrofuels in Future Energy Systems: A 2050 Case Study," Energy, Elsevier, vol. 199(C).
    20. Raslavičius, Laurencas & Semenov, Vladimir G. & Chernova, Nadezhda I. & Keršys, Artūras & Kopeyka, Aleksandr K., 2014. "Producing transportation fuels from algae: In search of synergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 133-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6425-:d:1233357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.