IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6331-d1230356.html
   My bibliography  Save this article

Review of Methods for Evaluating the Energy Efficiency of Vehicles with Conventional and Alternative Power Plants

Author

Listed:
  • Vasyl Mateichyk

    (Department of Technical Systems Engineering, Rzeszow University of Technology, al. Powstancow Warszawy 10, 35-959 Rzeszow, Poland)

  • Nataliia Kostian

    (Department of Automobiles and Technologies for Their Operating, Cherkasy State Technological University, Shevchenko 333, 18006 Cherkasy, Ukraine)

  • Miroslaw Smieszek

    (Department of Technical Systems Engineering, Rzeszow University of Technology, al. Powstancow Warszawy 10, 35-959 Rzeszow, Poland)

  • Igor Gritsuk

    (Department of Ship Power Plants Operation, Kherson State Maritime Academy, Ushakov Ave. 20, 73000 Kherson, Ukraine)

  • Valerii Verbovskyi

    (Department of Gas Technology, The Gas Institute Ukrainian Academy of Science of Ukraine, Degtyarivska St. 39, 03113 Kyiv, Ukraine)

Abstract

The evaluation of the energy efficiency of vehicles in operating conditions is used to solve management and control tasks in intelligent transport systems. The modern world fleet is characterized by an increase in the share of vehicles with alternative power plants (hybrid, electric, and hydrogen fuel cells). At the same time, vehicles with conventional power plants (internal combustion engines) remain in operation. A wide range of modern power plants determines the relevance of studying the advantages and limitations of existing methods of evaluating the vehicle energy efficiency, delineating the application scope and highlighting promising directions for their further development. The article systematizes the methods of evaluation and management of the energy efficiency of vehicles with conventional and alternative power plants. Special attention is paid to the assessment of energy consumption per unit of transport work at the stage of vehicle operation, taking into account various operational factors. The concept of a 3D morphological model of the transport system for evaluating the energy efficiency of vehicles is presented. An algorithm for the optimization of the current transport system configuration according to the criterion of an increase in the energy efficiency indicator is given.

Suggested Citation

  • Vasyl Mateichyk & Nataliia Kostian & Miroslaw Smieszek & Igor Gritsuk & Valerii Verbovskyi, 2023. "Review of Methods for Evaluating the Energy Efficiency of Vehicles with Conventional and Alternative Power Plants," Energies, MDPI, vol. 16(17), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6331-:d:1230356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sara Luciani & Andrea Tonoli, 2022. "Control Strategy Assessment for Improving PEM Fuel Cell System Efficiency in Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 15(6), pages 1-17, March.
    2. Vasyl Mateichyk & Nataliia Kostian & Miroslaw Smieszek & Jakub Mosciszewski & Liudmyla Tarandushka, 2023. "Evaluating Vehicle Energy Efficiency in Urban Transport Systems Based on Fuzzy Logic Models," Energies, MDPI, vol. 16(2), pages 1-22, January.
    3. Seongin Jo & Hyung Jun Kim & Sang Il Kwon & Jong Tae Lee & Suhan Park, 2023. "Assessment of Energy Consumption Characteristics of Ultra-Heavy-Duty Vehicles under Real Driving Conditions," Energies, MDPI, vol. 16(5), pages 1-18, February.
    4. Gian Luca Patrone & Elena Paffumi & Marcos Otura & Mario Centurelli & Christian Ferrarese & Steffen Jahn & Andreas Brenner & Bernd Thieringer & Daniel Braun & Thomas Hoffmann, 2022. "Assessing the Energy Consumption and Driving Range of the QUIET Project Demonstrator Vehicle," Energies, MDPI, vol. 15(4), pages 1-21, February.
    5. Mosiężny, Jędrzej & Ziegler, Bartosz & Grzymisławski, Przemysław & Ślefarski, Rafał, 2020. "Base drag reduction concept for commercial road vehicles," Energy, Elsevier, vol. 205(C).
    6. Ning Ma & Huaixian Yin & Kai Wang, 2023. "Prediction of the Remaining Useful Life of Supercapacitors at Different Temperatures Based on Improved Long Short-Term Memory," Energies, MDPI, vol. 16(14), pages 1-14, July.
    7. Hamza Mediouni & Amal Ezzouhri & Zakaria Charouh & Khadija El Harouri & Soumia El Hani & Mounir Ghogho, 2022. "Energy Consumption Prediction and Analysis for Electric Vehicles: A Hybrid Approach," Energies, MDPI, vol. 15(17), pages 1-17, September.
    8. José I. Huertas & Michael Giraldo & Luis F. Quirama & Jenny Díaz, 2018. "Driving Cycles Based on Fuel Consumption," Energies, MDPI, vol. 11(11), pages 1-13, November.
    9. Miroslaw Śmieszek & Nataliia Kostian & Vasyl Mateichyk & Jakub Mościszewski & Liudmyla Tarandushka, 2021. "Determination of the Model Basis for Assessing the Vehicle Energy Efficiency in Urban Traffic," Energies, MDPI, vol. 14(24), pages 1-18, December.
    10. Nikita V. Martyushev & Boris V. Malozyomov & Ilham H. Khalikov & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Vadim Sergeevich Tynchenko & Yadviga Aleksandrovna Tynchenko & Mengxu , 2023. "Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption," Energies, MDPI, vol. 16(2), pages 1-39, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasyl Mateichyk & Nataliia Kostian & Miroslaw Smieszek & Jakub Mosciszewski & Liudmyla Tarandushka, 2023. "Evaluating Vehicle Energy Efficiency in Urban Transport Systems Based on Fuzzy Logic Models," Energies, MDPI, vol. 16(2), pages 1-22, January.
    2. Jiho Ju & Dongho Choi & June-Seok Lee, 2023. "A Study on the Distributed-Control Architecture of a DSP-Based Solid-State Transformer System with Implementation," Energies, MDPI, vol. 16(16), pages 1-18, August.
    3. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport," Mathematics, MDPI, vol. 11(15), pages 1-31, July.
    4. Bingqiang Li & Saleem Riaz & Yiyun Zhao, 2023. "Experimental Validation of Iterative Learning Control for DC/DC Power Converters," Energies, MDPI, vol. 16(18), pages 1-16, September.
    5. Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    6. Artur Jaworski & Vasyl Mateichyk & Hubert Kuszewski & Maksymilian Mądziel & Paweł Woś & Bożena Babiarz & Mirosław Śmieszek & Sławomir Porada, 2023. "Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NO X Emissions Reduction in Sustainable Public Transport," Energies, MDPI, vol. 16(19), pages 1-18, October.
    7. Manfred Dollinger & Gerhard Fischerauer, 2023. "Physics-Based Prediction for the Consumption and Emissions of Passenger Vehicles and Light Trucks up to 2050," Energies, MDPI, vol. 16(8), pages 1-29, April.
    8. Pranjal Barman & Lachit Dutta & Brian Azzopardi, 2023. "Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art," Energies, MDPI, vol. 16(8), pages 1-23, April.
    9. Zvonimir Dabčević & Branimir Škugor & Jakov Topić & Joško Deur, 2022. "Synthesis of Driving Cycles Based on Low-Sampling-Rate Vehicle-Tracking Data and Markov Chain Methodology," Energies, MDPI, vol. 15(11), pages 1-21, June.
    10. Zhang, Hao & Gao, Jingyi & Kang, Le & Zhang, Yi & Wang, Licheng & Wang, Kai, 2023. "State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network," Energy, Elsevier, vol. 283(C).
    11. Li Zhao & Kun Li & Wu Zhao & Han-Chen Ke & Zhen Wang, 2022. "A Sticky Sampling and Markov State Transition Matrix Based Driving Cycle Construction Method for EV," Energies, MDPI, vol. 15(3), pages 1-19, January.
    12. Tianming Gao & Vasilii Erokhin & Aleksandr Arskiy, 2019. "Dynamic Optimization of Fuel and Logistics Costs as a Tool in Pursuing Economic Sustainability of a Farm," Sustainability, MDPI, vol. 11(19), pages 1-16, October.
    13. Boris V. Malozyomov & Nikita V. Martyushev & Elena V. Voitovich & Roman V. Kononenko & Vladimir Yu. Konyukhov & Vadim Tynchenko & Viktor Alekseevich Kukartsev & Yadviga Aleksandrovna Tynchenko, 2023. "Designing the Optimal Configuration of a Small Power System for Autonomous Power Supply of Weather Station Equipment," Energies, MDPI, vol. 16(13), pages 1-30, June.
    14. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    15. Hu, Jianjun & Wang, Yangguang & Zou, Lingbo & Wang, Zhouxin, 2023. "Adaptive rule control strategy for composite energy storage fuel cell vehicle based on vehicle operating state recognition," Renewable Energy, Elsevier, vol. 204(C), pages 166-175.
    16. Ping Ma & Shuhui Cui & Mingshuai Chen & Shengzhe Zhou & Kai Wang, 2023. "Review of Family-Level Short-Term Load Forecasting and Its Application in Household Energy Management System," Energies, MDPI, vol. 16(15), pages 1-17, August.
    17. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    18. Tino Vidović & Ivan Tolj & Gojmir Radica & Natalia Bodrožić Ćoko, 2022. "Proton-Exchange Membrane Fuel Cell Balance of Plant and Performance Simulation for Vehicle Applications," Energies, MDPI, vol. 15(21), pages 1-14, October.
    19. Zoltán Pusztai & Péter Kőrös & Ferenc Szauter & Ferenc Friedler, 2023. "Implementation of Optimized Regenerative Braking in Energy Efficient Driving Strategies," Energies, MDPI, vol. 16(6), pages 1-20, March.
    20. Lopez-Juarez, M. & Rockstroh, T. & Novella, R. & Vijayagopal, R., 2024. "A methodology to develop multi-physics dynamic fuel cell system models validated with vehicle realistic drive cycle data," Applied Energy, Elsevier, vol. 358(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6331-:d:1230356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.