IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8538-d705344.html
   My bibliography  Save this article

Determination of the Model Basis for Assessing the Vehicle Energy Efficiency in Urban Traffic

Author

Listed:
  • Miroslaw Śmieszek

    (Department of Technical Systems Engineering, Rzeszow University of Technology, al. Powstancow Warszawy 10, 35-959 Rzeszow, Poland)

  • Nataliia Kostian

    (Department of Automobiles and Technologies for their Operating, Cherkasy State Technological University, 333 Shevchenko, 18006 Cherkasy, Ukraine)

  • Vasyl Mateichyk

    (Department of Technical Systems Engineering, Rzeszow University of Technology, al. Powstancow Warszawy 10, 35-959 Rzeszow, Poland)

  • Jakub Mościszewski

    (Department of Technical Systems Engineering, Rzeszow University of Technology, al. Powstancow Warszawy 10, 35-959 Rzeszow, Poland)

  • Liudmyla Tarandushka

    (Department of Automobiles and Technologies for their Operating, Cherkasy State Technological University, 333 Shevchenko, 18006 Cherkasy, Ukraine)

Abstract

The paper studies the problem of assessing the vehicle energy efficiency on the streets of urban road network. As a result of morphological analysis of the system “Vehicle—Traffic flow—Road—Traffic Environment” 18 significant morphological attributes of its functional elements, that affect the energy efficiency of vehicles, were identified. Each attribute is characterized by 3–6 implementation variants, which are evaluated by the relevant quantitative or qualitative parameters. The energy efficiency of vehicles is determined by the criteria of their energy consumption considering the vehicle category, type of energy unit, mode of vehicle movement and adjustment factors—road, climatic and others. The input parameters values of the system in the process of traffic flow on the linear fragments of streets and road networks of the cities of Ukraine and Poland were measured. The set of independent system parameters is determined by applying the Farrar-Glober method based on statistical estimates. The specified set is the basis of the studied system and is formed of 10 independent input parameters. The presence in the basis of parameters that correspond to the morphological features of all four functional elements, confirmed the importance of these elements of the system. The mathematical dependence of the impact of vehicle characteristics, traffic flow, road and environment on vehicle energy efficiency is built. The standard deviation of the model values from the tabular ones equals σ ´ = 0.0091 . Relative standard deviation equals S ´ r = 1.5 % . The results of the study could be used in the development of new and optimization of existing intelligent traffic control systems of urban transport.

Suggested Citation

  • Miroslaw Śmieszek & Nataliia Kostian & Vasyl Mateichyk & Jakub Mościszewski & Liudmyla Tarandushka, 2021. "Determination of the Model Basis for Assessing the Vehicle Energy Efficiency in Urban Traffic," Energies, MDPI, vol. 14(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8538-:d:705344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8538/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8538/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miroslaw Smieszek & Magdalena Dobrzanska & Pawel Dobrzanski, 2019. "Rzeszow as a City Taking Steps Towards Developing Sustainable Public Transport," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    2. Miroslaw Smieszek & Vasyl Mateichyk & Magdalena Dobrzanska & Pawel Dobrzanski & Ganna Weigang, 2021. "The Impact of the Pandemic on Vehicle Traffic and Roadside Environmental Pollution: Rzeszow City as a Case Study," Energies, MDPI, vol. 14(14), pages 1-20, July.
    3. Maksymilian Mądziel & Tiziana Campisi & Artur Jaworski & Hubert Kuszewski & Paweł Woś, 2021. "Assessing Vehicle Emissions from a Multi-Lane to Turbo Roundabout Conversion Using a Microsimulation Tool," Energies, MDPI, vol. 14(15), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasyl Mateichyk & Nataliia Kostian & Miroslaw Smieszek & Igor Gritsuk & Valerii Verbovskyi, 2023. "Review of Methods for Evaluating the Energy Efficiency of Vehicles with Conventional and Alternative Power Plants," Energies, MDPI, vol. 16(17), pages 1-25, August.
    2. Vasyl Mateichyk & Nataliia Kostian & Miroslaw Smieszek & Jakub Mosciszewski & Liudmyla Tarandushka, 2023. "Evaluating Vehicle Energy Efficiency in Urban Transport Systems Based on Fuzzy Logic Models," Energies, MDPI, vol. 16(2), pages 1-22, January.
    3. Piotr Szewczyk & Andrzej Łebkowski, 2022. "Comparative Studies on Batteries for the Electrochemical Energy Storage in the Delivery Vehicle," Energies, MDPI, vol. 15(24), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veronika Harantová & Ambróz Hájnik & Alica Kalašová & Tomasz Figlus, 2022. "The Effect of the COVID-19 Pandemic on Traffic Flow Characteristics, Emissions Production and Fuel Consumption at a Selected Intersection in Slovakia," Energies, MDPI, vol. 15(6), pages 1-21, March.
    2. Marcin Janusz & Marcin Kowalczyk, 2022. "How Smart Are V4 Cities? Evidence from the Multidimensional Analysis," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    3. Artur Jaworski & Vasyl Mateichyk & Hubert Kuszewski & Maksymilian Mądziel & Paweł Woś & Bożena Babiarz & Mirosław Śmieszek & Sławomir Porada, 2023. "Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NO X Emissions Reduction in Sustainable Public Transport," Energies, MDPI, vol. 16(19), pages 1-18, October.
    4. Inese Mavlutova & Dzintra Atstaja & Janis Grasis & Jekaterina Kuzmina & Inga Uvarova & Dagnija Roga, 2023. "Urban Transportation Concept and Sustainable Urban Mobility in Smart Cities: A Review," Energies, MDPI, vol. 16(8), pages 1-16, April.
    5. Sang-Jun Park & Kyung-Tae Lee & Jin-Bin Im & Ju-Hyung Kim, 2022. "The Need for Smart Architecture Caused by the Impact of COVID-19 upon Architecture and City: A Systematic Literature Review," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    6. Artur Jaworski & Maksymilian Mądziel & Hubert Kuszewski, 2022. "Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions," Energies, MDPI, vol. 15(6), pages 1-14, March.
    7. Miroslaw Smieszek & Vasyl Mateichyk & Magdalena Dobrzanska & Pawel Dobrzanski & Ganna Weigang, 2021. "The Impact of the Pandemic on Vehicle Traffic and Roadside Environmental Pollution: Rzeszow City as a Case Study," Energies, MDPI, vol. 14(14), pages 1-20, July.
    8. Chao Wang & Zhuoqun Sun & Zhirui Ye, 2020. "On-Road Bus Emission Comparison for Diverse Locations and Fuel Types in Real-World Operation Conditions," Sustainability, MDPI, vol. 12(5), pages 1-14, February.
    9. Ammar Šarić & Suada Sulejmanović & Sanjin Albinović & Mirza Pozder & Žanesa Ljevo, 2023. "The Role of Intersection Geometry in Urban Air Pollution Management," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    10. Maksymilian Mądziel & Tiziana Campisi & Artur Jaworski & Hubert Kuszewski & Paweł Woś, 2021. "Assessing Vehicle Emissions from a Multi-Lane to Turbo Roundabout Conversion Using a Microsimulation Tool," Energies, MDPI, vol. 14(15), pages 1-21, July.
    11. Jingjing Liu & Hongwei Ge & Jiajie Li & Pengcheng He & Zhangang Hao & Michael Hitch, 2022. "How Can Sustainable Public Transport Be Improved? A Traffic Sign Recognition Approach Using Convolutional Neural Network," Energies, MDPI, vol. 15(19), pages 1-14, October.
    12. Maksymilian Mądziel & Tiziana Campisi & Artur Jaworski & Giovanni Tesoriere, 2021. "The Development of Strategies to Reduce Exhaust Emissions from Passenger Cars in Rzeszow City—Poland. A Preliminary Assessment of the Results Produced by the Increase of E-Fleet," Energies, MDPI, vol. 14(4), pages 1-21, February.
    13. Peter Tapak & Michal Kocur & Juraj Matej, 2023. "On-Board Fuel Consumption Meter Field Testing Results," Energies, MDPI, vol. 16(19), pages 1-14, September.
    14. Maria Vittoria Corazza & Sandro Imbastaro & Marco Pascucci, 2020. "Regenerating Communities. New Life for a Local Railway: A Technological and Environmental Study," Sustainability, MDPI, vol. 12(9), pages 1-24, May.
    15. Artur Jaworski & Hubert Kuszewski & Krzysztof Lew & Paweł Wojewoda & Krzysztof Balawender & Paweł Woś & Rafał Longwic & Sergii Boichenko, 2023. "Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests," Energies, MDPI, vol. 16(15), pages 1-20, July.
    16. Francesco Acuto & Margarida C. Coelho & Paulo Fernandes & Tullio Giuffrè & Elżbieta Macioszek & Anna Granà, 2022. "Assessing the Environmental Performances of Urban Roundabouts Using the VSP Methodology and AIMSUN," Energies, MDPI, vol. 15(4), pages 1-28, February.
    17. Maksymilian Mądziel & Artur Jaworski & Hubert Kuszewski & Paweł Woś & Tiziana Campisi & Krzysztof Lew, 2021. "The Development of CO 2 Instantaneous Emission Model of Full Hybrid Vehicle with the Use of Machine Learning Techniques," Energies, MDPI, vol. 15(1), pages 1-14, December.
    18. Weinan He & Lei Duan & Zhuoyuan Zhang & Xu Zhao & Ying Cheng, 2022. "Analysis of the Characteristics of Real-World Emission Factors and VSP Distributions—A Case Study in Beijing," Sustainability, MDPI, vol. 14(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8538-:d:705344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.