IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6299-d1228640.html
   My bibliography  Save this article

Analysis on DC Fault Current Limiting Operation of Twice-Quench Trigger Type SFCL Using Transformer Considering Magnetizing Current and Current Limiting Reactor

Author

Listed:
  • Sung-Hun Lim

    (Department of Electrical Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul 156-743, Republic of Korea)

  • Min-Ki Park

    (Department of Electrical Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul 156-743, Republic of Korea)

  • Sung-Hoon Park

    (School of Mechanical Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul 156-743, Republic of Korea)

  • Jae-Woo Chung

    (Department of Materials Science and Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul 156-743, Republic of Korea)

Abstract

As the penetration of distributed energy resources (DER) has increased, research on direct current (DC) power transmission and distribution has been actively performed. The DC system has the advantage of high-power transmission efficiency. However, it has a very large and rapid increase in fault current in the DC system directly after a fault occurs. As one of the countermeasures, studies on the application of the superconducting fault current limiter (SFCL) into the DC system have been conducted to protect major facilities from DC fault current, which is expected to alleviate the power burden on the DC circuit breaker through its quench operation. Among the studied DC SFCLs, the trigger-type DC SFCL using a transformer, which can achieve the peak DC fault current-limiting operation, has been suggested. However, the DC fault current-limiting operation, in the case of the DC SFCL with a current-limiting reactor (CLR), was analyzed to not be effectively executed in the steady state since the transient state directly follows the fault occurrence. In this paper, the DC fault current-limiting operation of a twice-quench trigger type SFCL using a transformer considering magnetizing current and its CLR was analyzed. Through DC fault current-limiting experiments according to the inductance of its current-limiting reactor (CLR), the effective current-limiting design of twice-quench trigger type SFCL using a transformer was described.

Suggested Citation

  • Sung-Hun Lim & Min-Ki Park & Sung-Hoon Park & Jae-Woo Chung, 2023. "Analysis on DC Fault Current Limiting Operation of Twice-Quench Trigger Type SFCL Using Transformer Considering Magnetizing Current and Current Limiting Reactor," Energies, MDPI, vol. 16(17), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6299-:d:1228640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Morris Brenna & Federica Foiadelli & Michela Longo & Tamrat Demllie Abegaz, 2016. "Integration and Optimization of Renewables and Storages for Rural Electrification," Sustainability, MDPI, vol. 8(10), pages 1-18, September.
    2. Navid Bayati & Hamid Reza Baghaee & Mehdi Savaghebi & Amin Hajizadeh & Mohsen N. Soltani & Zhengyu Lin, 2021. "DC Fault Current Analyzing, Limiting, and Clearing in DC Microgrid Clusters," Energies, MDPI, vol. 14(19), pages 1-19, October.
    3. Jae-In Lee & Van Quan Dao & Minh-Chau Dinh & Seok-ju Lee & Chang Soon Kim & Minwon Park, 2021. "Combined Operation Analysis of a Saturated Iron-Core Superconducting Fault Current Limiter and Circuit Breaker for an HVDC System Protection," Energies, MDPI, vol. 14(23), pages 1-18, November.
    4. Kang-Cheol Cho & Min-Ki Park & Sung-Hun Lim, 2020. "Analysis of the DC Fault Current Limiting Characteristics of a DC Superconducting Fault Current Limiter Using a Transformer," Energies, MDPI, vol. 13(16), pages 1-13, August.
    5. Young-Pil Kim & Seok-Cheol Ko, 2021. "DC Current Limiting Characteristics of Flux-Coupled Type SFCL Using Superconducting Element Connected in Parallel in a DC System," Energies, MDPI, vol. 14(4), pages 1-14, February.
    6. Seok-Cheol Ko & Tae-Hee Han & Sung-Hun Lim, 2020. "Analysis on Double Quench and Instantaneous Power of SFCL Using Two Magnetically Coupled Windings According to Winding Direction," Energies, MDPI, vol. 13(21), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Ferreira da Silva & João F. P. Fernandes & Paulo José da Costa Branco, 2022. "Superconducting Electric Power Systems: R&D Advancements," Energies, MDPI, vol. 15(19), pages 1-10, October.
    2. Kwang-Hoon Yoon & Joong-Woo Shin & Jae-Chul Kim & Hyeong-Jin Lee & Jin-Seok Kim, 2022. "Simulation of a Low-Voltage Direct Current System Using T-SFCL to Enhance Low Voltage Ride through Capability," Energies, MDPI, vol. 15(6), pages 1-11, March.
    3. Nikolas Schöne & Boris Heinz, 2023. "Semi-Systematic Literature Review on the Contribution of Hydrogen to Universal Access to Energy in the Rationale of Sustainable Development Goal Target 7.1," Energies, MDPI, vol. 16(4), pages 1-42, February.
    4. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).
    5. Surender Reddy Salkuti, 2022. "Emerging and Advanced Green Energy Technologies for Sustainable and Resilient Future Grid," Energies, MDPI, vol. 15(18), pages 1-7, September.
    6. Mengjiao Wang & Xinlao Wei & Zhihang Zhao, 2022. "Short-Circuit Fault Current Parameter Prediction Method Based on Ultra-Short-Time Data Window," Energies, MDPI, vol. 15(23), pages 1-15, November.
    7. Laetitia Uwineza & Hyun-Goo Kim & Jan Kleissl & Chang Ki Kim, 2022. "Technical Control and Optimal Dispatch Strategy for a Hybrid Energy System," Energies, MDPI, vol. 15(8), pages 1-19, April.
    8. Nikolas Schöne & Raluca Dumitrescu & Boris Heinz, 2023. "Techno-Economic Evaluation of Hydrogen-Based Cooking Solutions in Remote African Communities—The Case of Kenya," Energies, MDPI, vol. 16(7), pages 1-33, April.
    9. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Carlos Roldán-Porta & Carlos Roldán-Blay & Guillermo Escrivá-Escrivá & Eduardo Quiles, 2019. "Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids," Sustainability, MDPI, vol. 11(19), pages 1-22, October.
    11. Grzegorz Komarzyniec, 2022. "Cooperation of an Electric Arc Device with a Power Supply System Equipped with a Superconducting Element," Energies, MDPI, vol. 15(7), pages 1-18, March.
    12. Akbar Maleki & Marc A. Rosen & Fathollah Pourfayaz, 2017. "Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    13. Alan Cruz Rojas & Guadalupe Lopez Lopez & J. F. Gomez-Aguilar & Victor M. Alvarado & Cinda Luz Sandoval Torres, 2017. "Control of the Air Supply Subsystem in a PEMFC with Balance of Plant Simulation," Sustainability, MDPI, vol. 9(1), pages 1-23, January.
    14. Mehdi Moradian & Tek Tjing Lie & Kosala Gunawardane, 2023. "DC Circuit Breaker Evolution, Design, and Analysis," Energies, MDPI, vol. 16(17), pages 1-16, August.
    15. Min-Ki Park & Sung-Hun Lim, 2023. "Study on Malfunction of OCR Due to Penetration of DER into Power Distribution System with SFCL," Energies, MDPI, vol. 16(17), pages 1-18, August.
    16. Dahyun Kang & Tae Yong Jung, 2020. "Renewable Energy Options for a Rural Village in North Korea," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    17. Ali Saleh Aziz & Mohammad Faridun Naim Tajuddin & Mohd Rafi Adzman & Makbul A. M. Ramli & Saad Mekhilef, 2019. "Energy Management and Optimization of a PV/Diesel/Battery Hybrid Energy System Using a Combined Dispatch Strategy," Sustainability, MDPI, vol. 11(3), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6299-:d:1228640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.