IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6224-d1226468.html
   My bibliography  Save this article

A Scalable Segmented-Based PEM Fuel Cell Hybrid Power System Model and Its Simulation Applications

Author

Listed:
  • Lianghui Huang

    (School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
    Key Institute of Robotics Industry of Zhejiang Province, Hangzhou 310023, China)

  • Quan Ouyang

    (College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China)

  • Jian Chen

    (State Key Laboratory of Fluid Power & Mechatronic System, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China)

  • Zhiyang Liu

    (State Key Laboratory of Fluid Power & Mechatronic System, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
    Jinhua HydroT Technology Co., Ltd., Jinhua 321017, China)

  • Xiaohua Wu

    (Vehicle Measurement Control and Safety Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China)

Abstract

A scalable segmented-based proton-exchange membrane fuel cell (PEMFC) hybrid power system model is developed in this paper. The fuel cell (FC) is developed as a dynamic lumped parameter model to predict the current distributions during dynamic load scenarios. The fuel cell is segmented into 3 × 3 segments connected with several physical ports and with the variables balanced automatically. Based on the proposed model, a real-time energy management framework is designed to distribute the load current demand during dynamic operations. Simulation results show that the proposed strategy has good performance on both single/segmented fuel cell–battery hybrid systems and the low battery state of charge (SOC) situation. This paper proposes an approach that uses an interconnected ordinary differential equations (ODEs) system model in control problems, which makes the control algorithms readily applicable.

Suggested Citation

  • Lianghui Huang & Quan Ouyang & Jian Chen & Zhiyang Liu & Xiaohua Wu, 2023. "A Scalable Segmented-Based PEM Fuel Cell Hybrid Power System Model and Its Simulation Applications," Energies, MDPI, vol. 16(17), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6224-:d:1226468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehdi Sellali & Alexandre Ravey & Achour Betka & Abdellah Kouzou & Mohamed Benbouzid & Abdesslem Djerdir & Ralph Kennel & Mohamed Abdelrahem, 2022. "Multi-Objective Optimization-Based Health-Conscious Predictive Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles," Energies, MDPI, vol. 15(4), pages 1-17, February.
    2. Xu, Liangfei & Mueller, Clemens David & Li, Jianqiu & Ouyang, Minggao & Hu, Zunyan, 2015. "Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 664-674.
    3. Xiao Hu & Shikun Liu & Ke Song & Yuan Gao & Tong Zhang, 2021. "Novel Fuzzy Control Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Considering State of Health," Energies, MDPI, vol. 14(20), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    2. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    3. Lei, Fei & Bai, Yingchun & Zhu, Wenhao & Liu, Jinhong, 2019. "A novel approach for electric powertrain optimization considering vehicle power performance, energy consumption and ride comfort," Energy, Elsevier, vol. 167(C), pages 1040-1050.
    4. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    5. Jiang, Hongliang & Xu, Liangfei & Li, Jianqiu & Hu, Zunyan & Ouyang, Minggao, 2019. "Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms," Energy, Elsevier, vol. 177(C), pages 386-396.
    6. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
    7. Wenshang Chen & Yang Liu & Ben Chen, 2022. "Numerical Simulation on Pressure Dynamic Response Characteristics of Hydrogen Systems for Fuel Cell Vehicles," Energies, MDPI, vol. 15(7), pages 1-18, March.
    8. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    9. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    10. Bhattacharjee, Debraj & Ghosh, Tamal & Bhola, Prabha & Martinsen, Kristian & Dan, Pranab K., 2019. "Data-driven surrogate assisted evolutionary optimization of hybrid powertrain for improved fuel economy and performance," Energy, Elsevier, vol. 183(C), pages 235-248.
    11. Xun, Qian & Murgovski, Nikolce & Liu, Yujing, 2022. "Chance-constrained robust co-design optimization for fuel cell hybrid electric trucks," Applied Energy, Elsevier, vol. 320(C).
    12. Iqbal, Mehroze & Laurent, Julien & Benmouna, Amel & Becherif, Mohamed & Ramadan, Haitham S. & Claude, Frederic, 2022. "Ageing-aware load following control for composite-cost optimal energy management of fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 254(PA).
    13. Hu, Jianjun & Wang, Yangguang & Zou, Lingbo & Wang, Zhouxin, 2023. "Adaptive rule control strategy for composite energy storage fuel cell vehicle based on vehicle operating state recognition," Renewable Energy, Elsevier, vol. 204(C), pages 166-175.
    14. Menglin Li & Haoran Liu & Mei Yan & Hongyang Xu & Hongwen He, 2022. "A Novel Multi-Objective Energy Management Strategy for Fuel Cell Buses Quantifying Fuel Cell Degradation as Operating Cost," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    15. Peng, Fei & Zhao, Yuanzhe & Chen, Ting & Zhang, Xuexia & Chen, Weirong & Zhou, Donghua & Li, Qi, 2018. "Development of robust suboptimal real-time power sharing strategy for modern fuel cell based hybrid tramways considering operational uncertainties and performance degradation," Applied Energy, Elsevier, vol. 226(C), pages 503-521.
    16. Adriano Ceschia & Toufik Azib & Olivier Bethoux & Francisco Alves, 2022. "Multi-Criteria Optimal Design for FUEL Cell Hybrid Power Sources," Energies, MDPI, vol. 15(9), pages 1-18, May.
    17. Alessandro Serpi & Mario Porru, 2019. "Modelling and Design of Real-Time Energy Management Systems for Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 12(22), pages 1-21, November.
    18. Liu, Yonggang & Liu, Junjun & Zhang, Yuanjian & Wu, Yitao & Chen, Zheng & Ye, Ming, 2020. "Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization," Energy, Elsevier, vol. 207(C).
    19. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Zhu, Jianyun & Chen, Li & Wang, Xuefeng & Yu, Long, 2020. "Bi-level optimal sizing and energy management of hybrid electric propulsion systems," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6224-:d:1226468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.