IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p3021-d1487564.html
   My bibliography  Save this article

Dynamical Sphere Regrouping Particle Swarm Optimization Programming: An Automatic Programming Algorithm Avoiding Premature Convergence

Author

Listed:
  • Martín Montes Rivera

    (Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Campus es Parque de Ciencia y Tecnología QUANTUM, Cto., Marie Curie S/N, Zacatecas 98160, Mexico
    Research and Postgraduate Studies, Department of Universidad Politécnica de Aguascalientes, Aguascalientes 20342, Mexico)

  • Carlos Guerrero-Mendez

    (Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Campus es Parque de Ciencia y Tecnología QUANTUM, Cto., Marie Curie S/N, Zacatecas 98160, Mexico)

  • Daniela Lopez-Betancur

    (Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Campus es Parque de Ciencia y Tecnología QUANTUM, Cto., Marie Curie S/N, Zacatecas 98160, Mexico)

  • Tonatiuh Saucedo-Anaya

    (Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Campus es Parque de Ciencia y Tecnología QUANTUM, Cto., Marie Curie S/N, Zacatecas 98160, Mexico)

Abstract

Symbolic regression plays a crucial role in machine learning and data science by allowing the extraction of meaningful mathematical models directly from data without imposing a specific structure. This level of adaptability is especially beneficial in scientific and engineering fields, where comprehending and articulating the underlying data relationships is just as important as making accurate predictions. Genetic Programming (GP) has been extensively utilized for symbolic regression and has demonstrated remarkable success in diverse domains. However, GP’s heavy reliance on evolutionary mechanisms makes it computationally intensive and challenging to handle. On the other hand, Particle Swarm Optimization (PSO) has demonstrated remarkable performance in numerical optimization with parallelism, simplicity, and rapid convergence. These attributes position PSO as a compelling option for Automatic Programming (AP), which focuses on the automatic generation of programs or mathematical models. Particle Swarm Programming (PSP) has emerged as an alternative to Genetic Programming (GP), with a specific emphasis on harnessing the efficiency of PSO for symbolic regression. However, PSP remains unsolved due to the high-dimensional search spaces and local optimal regions in AP, where traditional PSO can encounter issues such as premature convergence and stagnation. To tackle these challenges, we introduce Dynamical Sphere Regrouping PSO Programming (DSRegPSOP), an innovative PSP implementation that integrates DSRegPSO’s dynamical sphere regrouping and momentum conservation mechanisms. DSRegPSOP is specifically developed to deal with large-scale, high-dimensional search spaces featuring numerous local optima, thus proving effective behavior for symbolic regression tasks. We assess DSRegPSOP by generating 10 mathematical expressions for mapping points from functions with varying complexity, including noise in position and cost evaluation. Moreover, we also evaluate its performance using real-world datasets. Our results show that DSRegPSOP effectively addresses the shortcomings of PSO in PSP by producing mathematical models entirely generated by AP that achieve accuracy similar to other machine learning algorithms optimized for regression tasks involving numerical structures. Additionally, DSRegPSOP combines the benefits of symbolic regression with the efficiency of PSO.

Suggested Citation

  • Martín Montes Rivera & Carlos Guerrero-Mendez & Daniela Lopez-Betancur & Tonatiuh Saucedo-Anaya, 2024. "Dynamical Sphere Regrouping Particle Swarm Optimization Programming: An Automatic Programming Algorithm Avoiding Premature Convergence," Mathematics, MDPI, vol. 12(19), pages 1-53, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3021-:d:1487564
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/3021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/3021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sedighizadeh, Davoud & Masehian, Ellips & Sedighizadeh, Mostafa & Akbaripour, Hossein, 2021. "GEPSO: A new generalized particle swarm optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 194-212.
    2. Martín Montes Rivera & Carlos Guerrero-Mendez & Daniela Lopez-Betancur & Tonatiuh Saucedo-Anaya, 2023. "Dynamical Sphere Regrouping Particle Swarm Optimization: A Proposed Algorithm for Dealing with PSO Premature Convergence in Large-Scale Global Optimization," Mathematics, MDPI, vol. 11(20), pages 1-40, October.
    3. Shuangquan Liu & Pengcheng Wang & Zifan Xu & Zhipeng Feng & Congtong Zhang & Jinwen Wang & Cheng Chen, 2023. "Hydropower Unit Commitment Using a Genetic Algorithm with Dynamic Programming," Energies, MDPI, vol. 16(15), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kezong Tang & Xiong-Fei Wei & Yuan-Hao Jiang & Zi-Wei Chen & Lihua Yang, 2023. "An Adaptive Ant Colony Optimization for Solving Large-Scale Traveling Salesman Problem," Mathematics, MDPI, vol. 11(21), pages 1-26, October.
    2. González-Parra, Gilberto & Villanueva-Oller, Javier & Navarro-González, F.J. & Ceberio, Josu & Luebben, Giulia, 2024. "A network-based model to assess vaccination strategies for the COVID-19 pandemic by using Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Chenyang Gao & Teng Li & Yuelin Gao & Ziyu Zhang, 2024. "A Comprehensive Multi-Strategy Enhanced Biogeography-Based Optimization Algorithm for High-Dimensional Optimization and Engineering Design Problems," Mathematics, MDPI, vol. 12(3), pages 1-35, January.
    4. Abd-Elhaleem, Sameh & Shoeib, Walaa & Sobaih, Abdel Azim, 2023. "A new power management strategy for plug-in hybrid electric vehicles based on an intelligent controller integrated with CIGPSO algorithm," Energy, Elsevier, vol. 265(C).
    5. Zhong Guan & Hui Wang & Zhi Li & Xiaohu Luo & Xi Yang & Jugang Fang & Qiang Zhao, 2024. "Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm," Energies, MDPI, vol. 17(7), pages 1-20, April.
    6. Yang, Xu & Li, Hongru, 2023. "Multi-sample learning particle swarm optimization with adaptive crossover operation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 246-282.
    7. Martín Montes Rivera & Carlos Guerrero-Mendez & Daniela Lopez-Betancur & Tonatiuh Saucedo-Anaya, 2023. "Dynamical Sphere Regrouping Particle Swarm Optimization: A Proposed Algorithm for Dealing with PSO Premature Convergence in Large-Scale Global Optimization," Mathematics, MDPI, vol. 11(20), pages 1-40, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3021-:d:1487564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.