IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5564-d1200472.html
   My bibliography  Save this article

Experimental Investigation of a Self-Sustained Liquid Fuel Burner Using Inert Porous Media

Author

Listed:
  • Huaibin Gao

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Yongyong Wang

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Shouchao Zong

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Yu Ma

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Chuanwei Zhang

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

Abstract

A self-sustained porous burner without a sprayed atomizer was built for diesel oil. It consisted of metal fiber felt as an evaporator upstream and ceramic foam as an emitter downstream. The liquid fuel underwent film boiling in the porous evaporator and was rapidly evaporated by the heat recirculated from the porous emitter to the porous evaporator through intense irradiative heat flux. The effect of the porous structure and its installation location on the performance of the porous burner was investigated. The results indicated that the evaporation and combustion of liquid fuel could be prompted by the radiation of porous media. The position of the flame moved downstream, and the flame temperature decreased when the distance between the metal fiber felt and the ceramic foam was increased. The lowest NOx concentration was obtained when the distance between the foam and the metal fiber felt was 90 mm. When the diameter of the central hole of the ceramic foam was increased, the position of the flame moved towards the burner outlet, and the flame temperature and NOx emission declined. The flame temperature of the divergent configuration as emitter was higher than that of the convergent configuration, and the flame temperature of the C–D configuration was higher than that of the D–C configuration. Different ceramic foam structures had a significant effect on the temperature and emission in the combustion chamber, which showed that the evaporation and radiation performance of inert porous media burners with different structures is quite different.

Suggested Citation

  • Huaibin Gao & Yongyong Wang & Shouchao Zong & Yu Ma & Chuanwei Zhang, 2023. "Experimental Investigation of a Self-Sustained Liquid Fuel Burner Using Inert Porous Media," Energies, MDPI, vol. 16(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5564-:d:1200472
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mujeebu, M. Abdul & Abdullah, M.Z. & Bakar, M.Z. Abu & Mohamad, A.A. & Abdullah, M.K., 2009. "Applications of porous media combustion technology - A review," Applied Energy, Elsevier, vol. 86(9), pages 1365-1375, September.
    2. Pan, J.F. & Wu, D. & Liu, Y.X. & Zhang, H.F. & Tang, A.K. & Xue, H., 2015. "Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor," Applied Energy, Elsevier, vol. 160(C), pages 802-807.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    2. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    4. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    5. Chen, Guan-Bang & Li, Yueh-Heng & Cheng, Tsarng-Sheng & Chao, Yei-Chin, 2013. "Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion," Energy, Elsevier, vol. 55(C), pages 564-570.
    6. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    7. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    8. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
    9. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    10. Zuo, Wei & E, Jiaqiang & Liu, Haili & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2016. "Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer," Applied Energy, Elsevier, vol. 184(C), pages 77-87.
    11. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
    12. Liu, Zeqi & Liu, Wanhao & Du, Yiqing & Fan, Aiwu, 2024. "Experimental study on the propagation characteristics of non-premixed H2/air flames in a curved micro-combustor," Energy, Elsevier, vol. 299(C).
    13. Wei, Depeng & Peng, Qingguo & Yin, Ruixue & Wang, Hao & Tian, Xinghua & Yan, Feng & Fu, Guang, 2024. "Optimizing micro power generation with blended fuels and porous media for H2-fueled combustion," Renewable Energy, Elsevier, vol. 233(C).
    14. Yan, Yunfei & Liu, Ying & Li, Lixian & Cui, Yu & Zhang, Li & Yang, Zhongqing & Zhang, Zhien, 2019. "Numerical comparison of H2/air catalytic combustion characteristic of micro–combustors with a conventional, slotted or controllable slotted bluff body," Energy, Elsevier, vol. 189(C).
    15. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    16. Hong-Wei Shi & Hai-Peng Wang, 2023. "Research on Full Premixed Combustion and Emission Characteristics of Non-Electric Gas Boiler," Energies, MDPI, vol. 16(21), pages 1-28, November.
    17. Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).
    18. Hinrichs, Jörn & Felsmann, Daniel & Schweitzer-De Bortoli, Stefan & Tomczak, Heinz-Jörg & Pitsch, Heinz, 2018. "Numerical and experimental investigation of pollutant formation and emissions in a full-scale cylindrical heating unit of a condensing gas boiler," Applied Energy, Elsevier, vol. 229(C), pages 977-989.
    19. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production," Applied Energy, Elsevier, vol. 208(C), pages 905-919.
    20. Marín, Pablo & Díez, Fernando V. & Ordóñez, Salvador, 2014. "A new method for controlling the ignition state of a regenerative combustor using a heat storage device," Applied Energy, Elsevier, vol. 116(C), pages 322-332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5564-:d:1200472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.