IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5063-d1183480.html
   My bibliography  Save this article

Status of Foam as a Liquid Blocking Agent in Porous Media: A Review

Author

Listed:
  • Jonas S. Solbakken

    (NORCE Norwegian Research Centre, Nygårdsgaten 112, 5008 Bergen, Norway)

Abstract

This article summarizes the state-of-the-art knowledge gained from field observations and laboratory studies regarding foam as a liquid controlling agent in porous media. Being the least explored property of foam, its effect and potential have often been overlooked or simply ignored. The aim with this review is therefore to demonstrate the abilities that foam could have to block, reduce, delay, suppress, or divert water flow in porous media. As a liquid controlling agent in porous media, foam has potential for industrial processes that involve fluid injections or fluid withdrawals in porous geological formations, such as improved/enhanced oil recovery (IOR/EOR), matrix-stimulation treatments, underground storage of CO 2 , hydrogen, compressed-air or natural gas withdrawal, geothermal energy, and contaminated soil-groundwater remediation processes with unwanted aquifer impacts. Improving the water utilization factor and water management in these applications might result in tremendous energic, economic, and environmental incentives that are worth pursuing. Specific focus in this review is given to the post-foam water injection, which determines the ultimate stability and water-blocking capabilities of the foam treatment. Main parameters and mechanisms that can influence foam stability against water injection/intrusion after generation and placement are assessed and discussed. Unresolved issues are highlighted, which give recommendations for further research and field-scale operations.

Suggested Citation

  • Jonas S. Solbakken, 2023. "Status of Foam as a Liquid Blocking Agent in Porous Media: A Review," Energies, MDPI, vol. 16(13), pages 1-32, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5063-:d:1183480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5063/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leena Grandell & Charles A.S. Hall & Mikael Höök, 2011. "Energy Return on Investment for Norwegian Oil and Gas from 1991 to 2008," Sustainability, MDPI, vol. 3(11), pages 1-21, October.
    2. Voldsund, Mari & Ertesvåg, Ivar Ståle & He, Wei & Kjelstrup, Signe, 2013. "Exergy analysis of the oil and gas processing on a North Sea oil platform a real production day," Energy, Elsevier, vol. 55(C), pages 716-727.
    3. Mohammad S. Masnadi & Adam R. Brandt, 2017. "Climate impacts of oil extraction increase significantly with oilfield age," Nature Climate Change, Nature, vol. 7(8), pages 551-556, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoyang Kong & Xiucheng Dong & Bo Xu & Rui Li & Qiang Yin & Cuifang Song, 2015. "EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China," Energies, MDPI, vol. 8(2), pages 1-22, January.
    2. Silva, J.A.M. & Flórez-Orrego, D. & Oliveira, S., 2014. "An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels," Energy, Elsevier, vol. 67(C), pages 490-495.
    3. Hongshuo Yan & Lianyong Feng & Jianliang Wang & Yuanying Chi & Yue Ma, 2021. "A Comprehensive Net Energy Analysis and Outlook of Energy System in China," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-14, December.
    4. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    5. Alexandre Poisson & Charles A. S. Hall, 2013. "Time Series EROI for Canadian Oil and Gas," Energies, MDPI, vol. 6(11), pages 1-20, November.
    6. Luciano Celi, 2021. "Deriving EROI for Thirty Large Oil Companies Using the CO2 Proxy from 1999 to 2018," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-12, December.
    7. Xuwei Tang & Qi Zhang & Chunxin Li & Haitao Zhang & Haiyun Xu, 2023. "The Effects and Driving Factors of Low-Carbon Transition of International Oil Companies: Evidence from a Super-SBM Model," Energies, MDPI, vol. 17(1), pages 1-19, December.
    8. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2014. "Oil and gas platforms with steam bottoming cycles: System integration and thermoenvironomic evaluation," Applied Energy, Elsevier, vol. 131(C), pages 222-237.
    9. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    10. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    11. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    12. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar, 2020. "Thermodynamic, Economic, and Environmental Analyses of a Waste-Fired Trigeneration Plant," Energies, MDPI, vol. 13(10), pages 1-18, May.
    13. Charalampos Michalakakis & Jonathan M. Cullen, 2022. "Dynamic exergy analysis: From industrial data to exergy flows," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 12-26, February.
    14. Barbosa, Yuri M. & da Silva, Julio A.M. & Junior, Silvio de O. & Torres, Ednildo A., 2018. "Performance assessment of primary petroleum production cogeneration plants," Energy, Elsevier, vol. 160(C), pages 233-244.
    15. Renaud Coulomb & Fanny Henriet & Léo Reitzmann, 2021. "'Bad' Oil, 'Worse' Oil and Carbon Misallocation," PSE Working Papers halshs-03244647, HAL.
    16. Xie, Minghua & Wei, Xiaonan & Chen, Chuanglian & Sun, Chuanwang, 2022. "China's natural gas production peak and energy return on investment (EROI): From the perspective of energy security," Energy Policy, Elsevier, vol. 164(C).
    17. Nguyen, Tuong-Van & Tock, Laurence & Breuhaus, Peter & Maréchal, François & Elmegaard, Brian, 2016. "CO2-mitigation options for the offshore oil and gas sector," Applied Energy, Elsevier, vol. 161(C), pages 673-694.
    18. Manfroni, Michele & Bukkens, Sandra G.F. & Giampietro, Mario, 2022. "Securing fuel demand with unconventional oils: A metabolic perspective," Energy, Elsevier, vol. 261(PB).
    19. Carranza Sánchez, Yamid Alberto & de Oliveira, Silvio, 2015. "Exergy analysis of offshore primary petroleum processing plant with CO2 capture," Energy, Elsevier, vol. 88(C), pages 46-56.
    20. Alexander Safronov & Anton Sokolov, 2014. "Preliminary Calculation of the EROI for the Production of Crude Oil and Light Oil Products in Russia," Sustainability, MDPI, vol. 6(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5063-:d:1183480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.