IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i2p786-807d45071.html
   My bibliography  Save this article

EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China

Author

Listed:
  • Zhaoyang Kong

    (School of Business Administration, China University of Petroleum (Beijing), Beijing 102249, China)

  • Xiucheng Dong

    (School of Business Administration, China University of Petroleum (Beijing), Beijing 102249, China)

  • Bo Xu

    (School of Business Administration, China University of Petroleum (Beijing), Beijing 102249, China
    China National Oil and Gas Exploration and Development Corporation, Beijing 100034, China)

  • Rui Li

    (Weichai Power Co., Ltd., Weifang 261000, China)

  • Qiang Yin

    (School of Business Administration, China University of Petroleum (Beijing), Beijing 102249, China)

  • Cuifang Song

    (School of Business Administration, China University of Petroleum (Beijing), Beijing 102249, China)

Abstract

Currently, there are considerable discrepancies between China’s central government and some local governments in attitudes towards coal to liquids (CTL) technology. Energy return on investment (EROI) analysis of CTL could provide new insights that may help solve this dilemma. Unfortunately, there has been little research on this topic; this paper therefore analyses the EROI of China’s Shenhua Group Direct Coal Liquefaction (DCL) project, currently the only DCL commercial project in the world. The inclusion or omission of internal energy and by-products is controversial. The results show that the EROI stnd without by-product and with internal energy is 0.68–0.81; the EROI stnd (the standard EROI) without by-product and without internal energy is 3.70–5.53; the EROI stnd with by-product and with internal energy is 0.76–0.90; the EROI stnd with by-product and without internal energy is 4.13–6.14. Furthermore, it is necessary to consider carbon capture and storage (CCS) as a means to control the CO 2 emissions. Considering the added energy inputs of CCS at the plant level, the EROIs decrease to 0.65–0.77, 2.87–3.97, 0.72–0.85, and 3.20–4.40, respectively. The extremely low, even negative, net energy, which may be due to high investments in infrastructure and low conversion efficiency, suggests CTL is not a good choice to replace conventional energy sources, and thus, Chinese government should be prudent when developing it.

Suggested Citation

  • Zhaoyang Kong & Xiucheng Dong & Bo Xu & Rui Li & Qiang Yin & Cuifang Song, 2015. "EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China," Energies, MDPI, vol. 8(2), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:2:p:786-807:d:45071
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/2/786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/2/786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mads V. Markussen & Hanne Østergård, 2013. "Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency," Energies, MDPI, vol. 6(8), pages 1-17, August.
    2. Ajay K. Gupta & Charles A.S. Hall, 2011. "A Review of the Past and Current State of EROI Data," Sustainability, MDPI, vol. 3(10), pages 1-14, October.
    3. Yan Hu & Lianyong Feng & Charles C.S. Hall & Dong Tian, 2011. "Analysis of the Energy Return on Investment (EROI) of the Huge Daqing Oil Field in China," Sustainability, MDPI, vol. 3(12), pages 1-16, November.
    4. Dale, Michael & Krumdieck, Susan & Bodger, Pat, 2011. "Net energy yield from production of conventional oil," Energy Policy, Elsevier, vol. 39(11), pages 7095-7102.
    5. Henry Chen, Y.-H. & Reilly, John M. & Paltsev, Sergey, 2011. "The prospects for coal-to-liquid conversion: A general equilibrium analysis," Energy Policy, Elsevier, vol. 39(9), pages 4713-4725, September.
    6. Rong, Fang & Victor, David G., 2011. "Coal liquefaction policy in China: Explaining the policy reversal since 2006," Energy Policy, Elsevier, vol. 39(12), pages 8175-8184.
    7. Leena Grandell & Charles A.S. Hall & Mikael Höök, 2011. "Energy Return on Investment for Norwegian Oil and Gas from 1991 to 2008," Sustainability, MDPI, vol. 3(11), pages 1-21, October.
    8. Cleveland, Cutler J., 2005. "Net energy from the extraction of oil and gas in the United States," Energy, Elsevier, vol. 30(5), pages 769-782.
    9. Adam R. Brandt, 2011. "Oil Depletion and the Energy Efficiency of Oil Production: The Case of California," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
    10. Roberto Cesare Callarotti, 2011. "Energy Return on Energy Invested (EROI) for the Electrical Heating of Methane Hydrate Reservoirs," Sustainability, MDPI, vol. 3(11), pages 1-10, November.
    11. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    12. Raugei, Marco & Fullana-i-Palmer, Pere & Fthenakis, Vasilis, 2012. "The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles," Energy Policy, Elsevier, vol. 45(C), pages 576-582.
    13. Bo Xu & Lianyong Feng & William X. Wei & Yan Hu & Jianliang Wang, 2014. "A Preliminary Forecast of the Production Status of China’s Daqing Oil field from the Perspective of EROI," Sustainability, MDPI, vol. 6(11), pages 1-21, November.
    14. Vallentin, Daniel, 2008. "Policy drivers and barriers for coal-to-liquids (CtL) technologies in the United States," Energy Policy, Elsevier, vol. 36(8), pages 3188-3201, August.
    15. Michael Dale & Susan Krumdieck & Pat Bodger, 2011. "A Dynamic Function for Energy Return on Investment," Sustainability, MDPI, vol. 3(10), pages 1-14, October.
    16. Brandt, Adam R. & Englander, Jacob & Bharadwaj, Sharad, 2013. "The energy efficiency of oil sands extraction: Energy return ratios from 1970 to 2010," Energy, Elsevier, vol. 55(C), pages 693-702.
    17. Mantripragada, Hari Chandan & Rubin, Edward S., 2011. "Techno-economic evaluation of coal-to-liquids (CTL) plants with carbon capture and sequestration," Energy Policy, Elsevier, vol. 39(5), pages 2808-2816, May.
    18. Cutler J. Cleveland & Peter A. O’Connor, 2011. "Energy Return on Investment (EROI) of Oil Shale," Sustainability, MDPI, vol. 3(11), pages 1-16, November.
    19. Megan C. Guilford & Charles A.S. Hall & Peter O’Connor & Cutler J. Cleveland, 2011. "A New Long Term Assessment of Energy Return on Investment (EROI) for U.S. Oil and Gas Discovery and Production," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
    20. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    21. Hu, Yan & Hall, Charles A.S. & Wang, Jianliang & Feng, Lianyong & Poisson, Alexandre, 2013. "Energy Return on Investment (EROI) of China's conventional fossil fuels: Historical and future trends," Energy, Elsevier, vol. 54(C), pages 352-364.
    22. Atlason, R.S. & Unnthorsson, R., 2013. "Hot water production improves the energy return on investment of geothermal power plants," Energy, Elsevier, vol. 51(C), pages 273-280.
    23. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, vol. 3(10), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingxuan Feng & Lianyong Feng & Jianliang Wang, 2018. "Analysis of Point-of-Use Energy Return on Investment and Net Energy Yields from China’s Conventional Fossil Fuels," Energies, MDPI, vol. 11(2), pages 1-21, February.
    2. Guido Busca, 2021. "Production of Gasolines and Monocyclic Aromatic Hydrocarbons: From Fossil Raw Materials to Green Processes," Energies, MDPI, vol. 14(13), pages 1-32, July.
    3. Tatiana Mitrova & Vyacheslav Kulagin & Dmitry Grushevenko & Ekaterina Grushevenko, 2015. "Technological Innovation as a Factor of Demand for Energy Sources in Automotive Industry," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 9(4), pages 18-31.
    4. Galina Nyashina & Jean Claude Legros & Pavel Strizhak, 2017. "Environmental Potential of Using Coal-Processing Waste as the Primary and Secondary Fuel for Energy Providers," Energies, MDPI, vol. 10(3), pages 1-11, March.
    5. Kong, Hui & Kong, Xianghui & Wang, Jian & Zhang, Jun, 2019. "Thermodynamic analysis of a solar thermochemical cycle-based direct coal liquefaction system for oil production," Energy, Elsevier, vol. 179(C), pages 1279-1287.
    6. Peter Viebahn & Daniel Vallentin & Samuel Höller, 2015. "Integrated Assessment of Carbon Capture and Storage (CCS) in South Africa’s Power Sector," Energies, MDPI, vol. 8(12), pages 1-27, December.
    7. Roman Volkov & Timur Valiullin & Olga Vysokomornaya, 2021. "Spraying of Composite Liquid Fuels Based on Types of Coal Preparation Waste: Current Problems and Achievements: Review," Energies, MDPI, vol. 14(21), pages 1-17, November.
    8. Chul-Seung Hong & Eul-Bum Lee, 2018. "Power Plant Economic Analysis: Maximizing Lifecycle Profitability by Simulating Preliminary Design Solutions of Steam-Cycle Conditions," Energies, MDPI, vol. 11(9), pages 1-21, August.
    9. Ke Wang & Harrie Vredenburg & Jianliang Wang & Yi Xiong & Lianyong Feng, 2017. "Energy Return on Investment of Canadian Oil Sands Extraction from 2009 to 2015," Energies, MDPI, vol. 10(5), pages 1-13, May.
    10. Kong, Zhaoyang & Dong, Xiucheng & Jiang, Qingzhe, 2019. "Forecasting the development of China's coal-to-liquid industry under security, economic and environmental constraints," Energy Economics, Elsevier, vol. 80(C), pages 253-266.
    11. Li, Yiming & Li, Changqing, 2019. "Fossil energy subsidies in China's modern coal chemical industry," Energy Policy, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    2. Salehi, Mohammad & Khajehpour, Hossein & Saboohi, Yadollah, 2020. "Extended Energy Return on Investment of multiproduct energy systems," Energy, Elsevier, vol. 192(C).
    3. Charles Guay-Boutet, 2023. "Estimating the Disaggregated Standard EROI of Canadian Oil Sands Extracted via Open-pit Mining, 1997–2016," Biophysical Economics and Resource Quality, Springer, vol. 8(1), pages 1-21, March.
    4. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    5. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    6. Xie, Minghua & Wei, Xiaonan & Chen, Chuanglian & Sun, Chuanwang, 2022. "China's natural gas production peak and energy return on investment (EROI): From the perspective of energy security," Energy Policy, Elsevier, vol. 164(C).
    7. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    8. Feng, Jingxuan & Feng, Lianyong & Wang, Jianliang & King, Carey W., 2018. "Modeling the point of use EROI and its implications for economic growth in China," Energy, Elsevier, vol. 144(C), pages 232-242.
    9. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    10. David Grassian & Daniel Olsen, 2019. "Lifecycle Energy Accounting of Three Small Offshore Oil Fields," Energies, MDPI, vol. 12(14), pages 1-23, July.
    11. Jingxuan Feng & Lianyong Feng & Jianliang Wang, 2018. "Analysis of Point-of-Use Energy Return on Investment and Net Energy Yields from China’s Conventional Fossil Fuels," Energies, MDPI, vol. 11(2), pages 1-21, February.
    12. Florian Fizaine & Victor Court, 2014. "Energy transition toward renewables and metal depletion: an approach through the EROI concept," Working Papers 1407, Chaire Economie du climat.
    13. Kong, Zhaoyang & Dong, Xiucheng & Jiang, Qingzhe, 2019. "Forecasting the development of China's coal-to-liquid industry under security, economic and environmental constraints," Energy Economics, Elsevier, vol. 80(C), pages 253-266.
    14. Hongshuo Yan & Lianyong Feng & Jianliang Wang & Yuanying Chi & Yue Ma, 2021. "A Comprehensive Net Energy Analysis and Outlook of Energy System in China," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-14, December.
    15. Bo Xu & Lianyong Feng & William X. Wei & Yan Hu & Jianliang Wang, 2014. "A Preliminary Forecast of the Production Status of China’s Daqing Oil field from the Perspective of EROI," Sustainability, MDPI, vol. 6(11), pages 1-21, November.
    16. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    17. Chen, Yingchao & Feng, Lianyong & Wang, Jianliang & Höök, Mikael, 2017. "Emergy-based energy return on investment method for evaluating energy exploitation," Energy, Elsevier, vol. 128(C), pages 540-549.
    18. Hu, Yan & Hall, Charles A.S. & Wang, Jianliang & Feng, Lianyong & Poisson, Alexandre, 2013. "Energy Return on Investment (EROI) of China's conventional fossil fuels: Historical and future trends," Energy, Elsevier, vol. 54(C), pages 352-364.
    19. Devin Moeller & David Murphy, 2016. "Net Energy Analysis of Gas Production from the Marcellus Shale," Biophysical Economics and Resource Quality, Springer, vol. 1(1), pages 1-13, May.
    20. Arvesen, Anders & Hertwich, Edgar G., 2015. "More caution is needed when using life cycle assessment to determine energy return on investment (EROI)," Energy Policy, Elsevier, vol. 76(C), pages 1-6.

    More about this item

    Keywords

    EROI; Shenhua; DCL; CTL; CCS; China;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:2:p:786-807:d:45071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.