IDEAS home Printed from https://ideas.repec.org/p/hal/psewpa/halshs-03244647.html
   My bibliography  Save this paper

'Bad' Oil, 'Worse' Oil and Carbon Misallocation

Author

Listed:
  • Renaud Coulomb

    (University of Melbourne)

  • Fanny Henriet

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Léo Reitzmann

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

Not all barrels of oil are created equal: their extraction varies in both private cost and carbon intensity. Using a rich micro-dataset on World oil fields and estimates of their carbon intensities and private extraction costs, this paper quantifies the additional emissions and costs from having extracted the 'wrong' deposits. We do so by comparing historic deposit-level supplies to counterfactuals that factor in pollution costs, while keeping annual global consumption unchanged. Between 1992 and 2018, carbon misallocation amounted to at least 10.02 GtCO2 with an environmental cost evaluated at 2 trillion US dollars (2018 US dollars). This translates into a significant supply-side ecological debt for major producers of dirty oil. Looking towards the future, we estimate the gains from making deposit-level extraction socially-optimal, and document the very unequal distribution of the subsequent stranded oil reserves across countries.

Suggested Citation

  • Renaud Coulomb & Fanny Henriet & Léo Reitzmann, 2021. "'Bad' Oil, 'Worse' Oil and Carbon Misallocation," PSE Working Papers halshs-03244647, HAL.
  • Handle: RePEc:hal:psewpa:halshs-03244647
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-03244647
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-03244647/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kenneth Gillingham & William Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly, 2018. "Modeling Uncertainty in Integrated Assessment of Climate Change: A Multimodel Comparison," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(4), pages 791-826.
    2. van der Meijden, Gerard & Ryszka, Karolina & Withagen, Cees, 2018. "Double limit pricing," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 153-167.
    3. Nezih Guner & Gustavo Ventura & Xu Yi, 2008. "Macroeconomic Implications of Size-Dependent Policies," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(4), pages 721-744, October.
    4. Coulomb, Renaud & Henriet, Fanny, 2018. "The Grey Paradox: How fossil-fuel owners can benefit from carbon taxation," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 206-223.
    5. Richard S.J. Tol, 2011. "The Social Cost of Carbon," Annual Review of Resource Economics, Annual Reviews, vol. 3(1), pages 419-443, October.
    6. Petter Vegard Hansen & Lars Lindholt, 2008. "The market power of OPEC 1973-2001," Applied Economics, Taylor & Francis Journals, vol. 40(22), pages 2939-2959.
    7. Robert M. Solow, 1974. "The Economics of Resources or the Resources of Economics," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 12, pages 257-276, Palgrave Macmillan.
    8. Timothy Lenton & Juan-Carlos Ciscar, 2013. "Integrating tipping points into climate impact assessments," Climatic Change, Springer, vol. 117(3), pages 585-597, April.
    9. Simon Dietz & Nicholas Stern, 2015. "Endogenous Growth, Convexity of Damage and Climate Risk: How Nordhaus' Framework Supports Deep Cuts in Carbon Emissions," Economic Journal, Royal Economic Society, vol. 0(583), pages 574-620, March.
    10. Hugo A. Hopenhayn, 2014. "Firms, Misallocation, and Aggregate Productivity: A Review," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 735-770, August.
    11. Coulomb, Renaud & Henriet, Fanny, 2018. "The Grey Paradox: How fossil-fuel owners can benefit from carbon taxation," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 206-223.
    12. Benchekroun, Hassan & van der Meijden, Gerard & Withagen, Cees, 2020. "OPEC, unconventional oil and climate change - On the importance of the order of extraction," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    13. Andrade de Sá, Saraly & Daubanes, Julien, 2016. "Limit pricing and the (in)effectiveness of the carbon tax," Journal of Public Economics, Elsevier, vol. 139(C), pages 28-39.
    14. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    15. Stefan Lamp & Mario Samano, 2023. "(Mis)allocation of Renewable Energy Sources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 195-229.
    16. Thomas Covert & Michael Greenstone & Christopher R. Knittel, 2016. "Will We Ever Stop Using Fossil Fuels?," Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 117-138, Winter.
    17. David Anthoff & Richard Tol, 2013. "Erratum to: The uncertainty about the social cost of carbon: A decomposition analysis using fund," Climatic Change, Springer, vol. 121(2), pages 413-413, November.
    18. Dietz, Simon & Stern, Nicholas, 2015. "Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions," LSE Research Online Documents on Economics 58406, London School of Economics and Political Science, LSE Library.
    19. Fischer, Carolyn & Salant, Stephen W., 2017. "Balancing the carbon budget for oil: The distributive effects of alternative policies," European Economic Review, Elsevier, vol. 99(C), pages 191-215.
    20. Cropper, Maureen, 2012. "How Should Benefits and Costs Be Discounted in an Intergenerational Context?," RFF Working Paper Series dp-12-42, Resources for the Future.
    21. David McCollum & Nico Bauer & Katherine Calvin & Alban Kitous & Keywan Riahi, 2014. "Fossil resource and energy security dynamics in conventional and carbon-constrained worlds," Climatic Change, Springer, vol. 123(3), pages 413-426, April.
    22. Richard L. Revesz & Peter H. Howard & Kenneth Arrow & Lawrence H. Goulder & Robert E. Kopp & Michael A. Livermore & Michael Oppenheimer & Thomas Sterner, 2014. "Global warming: Improve economic models of climate change," Nature, Nature, vol. 508(7495), pages 173-175, April.
    23. Joyeeta Gupta, 2010. "A history of international climate change policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 1(5), pages 636-653, September.
    24. David Anthoff & Richard Tol, 2013. "The uncertainty about the social cost of carbon: A decomposition analysis using fund," Climatic Change, Springer, vol. 117(3), pages 515-530, April.
    25. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    26. Severin Borenstein & James B. Bushnell & Frank A. Wolak, 2002. "Measuring Market Inefficiencies in California's Restructured Wholesale Electricity Market," American Economic Review, American Economic Association, vol. 92(5), pages 1376-1405, December.
    27. Hopenhayn, Hugo & Rogerson, Richard, 1993. "Job Turnover and Policy Evaluation: A General Equilibrium Analysis," Journal of Political Economy, University of Chicago Press, vol. 101(5), pages 915-938, October.
    28. Daniel Huppmann and Franziska Holz, 2012. "Crude Oil Market Power—A Shift in Recent Years?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    29. William D. Nordhaus, 1992. "The 'DICE' Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming," Cowles Foundation Discussion Papers 1009, Cowles Foundation for Research in Economics, Yale University.
    30. Mohammad S. Masnadi & Adam R. Brandt, 2017. "Climate impacts of oil extraction increase significantly with oilfield age," Nature Climate Change, Nature, vol. 7(8), pages 551-556, August.
    31. Correa, Juan A. & Gómez, Marcos & Luengo, Andrés & Parro, Francisco, 2021. "Environmental misallocation in the copper industry," Resources Policy, Elsevier, vol. 71(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    2. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    3. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    4. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    5. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    6. Rong Wang & Juan Moreno-Cruz & Ken Caldeira, 2017. "Will the use of a carbon tax for revenue generation produce an incentive to continue carbon emissions?," Post-Print hal-03226925, HAL.
    7. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    8. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    9. Yongyang Cai, 2020. "The Role of Uncertainty in Controlling Climate Change," Papers 2003.01615, arXiv.org, revised Oct 2020.
    10. Kollenbach, Gilbert & Schopf, Mark, 2022. "Unilaterally optimal climate policy and the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    11. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.
    12. Okullo, Samuel J. & Reynès, Frédéric & Hofkes, Marjan W., 2021. "(Bio-)Fuel mandating and the green paradox," Energy Economics, Elsevier, vol. 95(C).
    13. Hart, Rob & Gars, Johan, 2022. "The black paradox," European Economic Review, Elsevier, vol. 148(C).
    14. Miftakhova, Alena, 2021. "Global sensitivity analysis for optimal climate policies: Finding what truly matters," Economic Modelling, Elsevier, vol. 105(C).
    15. Rezai, Armon & van der Ploeg, Frederick, 2017. "Climate policies under climate model uncertainty: Max-min and min-max regret," Energy Economics, Elsevier, vol. 68(S1), pages 4-16.
    16. Agarwala, Matthew & Burke, Matt & Klusak, Patrycja & Mohaddes, Kamiar & Volz, Ulrich & Zenghelis, Dimitri, 2021. "Climate Change And Fiscal Sustainability: Risks And Opportunities," National Institute Economic Review, National Institute of Economic and Social Research, vol. 258, pages 28-46, November.
    17. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    18. Jussi Lintunen & Lauri Vilmi, 2021. "Optimal Emission Prices Over the Business Cycles," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(1), pages 135-167, September.
    19. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    20. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.

    More about this item

    Keywords

    Climate change; Oil; Carbon mitigation; Misallocation; Stranded assets;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:psewpa:halshs-03244647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.