IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4195-d1151052.html
   My bibliography  Save this article

Dielectric Properties and Fire Safety of Mineral Oil and Low-Viscosity Natural Ester Mixtures in Various Concentrations

Author

Listed:
  • Grzegorz Dombek

    (Institute of Electric Power Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland)

  • Jarosław Gielniak

    (Institute of Electric Power Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland)

Abstract

This paper presents the results of testing the electrical and fire properties of mineral oil and low-viscosity natural ester mixtures. Properties such as breakdown voltage, relative permeability, dispersion coefficient, conductivity, flash and burn point, and lower heating values were investigated in different concentrations of mixtures of the two liquids, as well as for the base liquids. To ensure equal humidity levels, the prepared samples of mixtures and base liquids were conditioned under identical climatic conditions, resulting in samples with similar relative humidity (9 ± 3)%. The obtained measurement results for mixtures of the two fluids were related to the values obtained for the base liquids and analyzed in terms of changes in electrical properties and fire safety when used as insulating liquids in transformers. The presented results are useful for supplementing knowledge on the possibilities of using dielectric liquid mixtures in high-voltage power devices, with to the aim of using mixtures as alternatives to mineral oil.

Suggested Citation

  • Grzegorz Dombek & Jarosław Gielniak, 2023. "Dielectric Properties and Fire Safety of Mineral Oil and Low-Viscosity Natural Ester Mixtures in Various Concentrations," Energies, MDPI, vol. 16(10), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4195-:d:1151052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maciej Zdanowski, 2020. "Electrostatic Charging Tendency Analysis Concerning Retrofilling Power Transformers with Envirotemp FR3 Natural Ester," Energies, MDPI, vol. 13(17), pages 1-11, August.
    2. Maciej Zdanowski, 2020. "Streaming Electrification of Nycodiel 1255 Synthetic Ester and Trafo EN Mineral Oil Mixtures by Using Rotating Disc Method," Energies, MDPI, vol. 13(23), pages 1-14, November.
    3. Shen, Zijia & Wang, Feipeng & Wang, Zhiqing & Li, Jian, 2021. "A critical review of plant-based insulating fluids for transformer: 30-year development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Abderrahmane Beroual & Usama Khaled & Phanuel Seraphine Mbolo Noah & Henry Sitorus, 2017. "Comparative Study of Breakdown Voltage of Mineral, Synthetic and Natural Oils and Based Mineral Oil Mixtures under AC and DC Voltages," Energies, MDPI, vol. 10(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Zdanowski, 2022. "Streaming Electrification of C 60 Fullerene Doped Insulating Liquids for Power Transformers Applications," Energies, MDPI, vol. 15(7), pages 1-14, March.
    2. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    3. Bartlomiej Pasternak & Pawel Rozga, 2023. "Influence of Dielectric Liquid Type on Partial-Discharge Inception Voltage in Oil-Wedge-Type Insulating System under AC Stress," Energies, MDPI, vol. 16(2), pages 1-11, January.
    4. Dariusz Zmarzły & Paweł Frącz, 2021. "Measurement of Dielectric Liquid Electrification in the Shuttle System with Two Parallel Electrodes," Energies, MDPI, vol. 14(4), pages 1-16, February.
    5. Maciej Zdanowski, 2020. "Streaming Electrification of Nycodiel 1255 Synthetic Ester and Trafo EN Mineral Oil Mixtures by Using Rotating Disc Method," Energies, MDPI, vol. 13(23), pages 1-14, November.
    6. Arputhasamy Joseph Amalanathan & Maciej Zdanowski & Ramanujam Sarathi, 2022. "Streaming Electrification of Different Insulating Fluids in Power Transformers," Energies, MDPI, vol. 15(21), pages 1-20, October.
    7. Pawel Rozga & Abderahhmane Beroual, 2021. "High Voltage Insulating Materials—Current State and Prospects," Energies, MDPI, vol. 14(13), pages 1-4, June.
    8. Piotr Przybylek, 2023. "Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy," Energies, MDPI, vol. 16(17), pages 1-12, September.
    9. Zhongliu Zhou & Yuanxiang Zhou & Xin Huang & Yunxiao Zhang & Mingyuan Wang & Shaowei Guo, 2018. "Feature Extraction and Comprehension of Partial Discharge Characteristics in Transformer Oil from Rated AC Frequency to Very Low Frequency," Energies, MDPI, vol. 11(7), pages 1-17, July.
    10. Teresa Nogueira & José Carvalho & José Magano, 2022. "Eco-Friendly Ester Fluid for Power Transformers versus Mineral Oil: Design Considerations," Energies, MDPI, vol. 15(15), pages 1-18, July.
    11. Ye, Wenyu & Hao, Jian & Zhang, Junyi & Zhang, Jingwen & Gao, Chenyu & Liao, Ruijin, 2023. "Atomic scale microparameter analysis of modified natural ester molecules related to impulse discharge characteristics under electric field," Renewable Energy, Elsevier, vol. 219(P1).
    12. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    13. M. Z. H. Makmud & H. A. Illias & C. Y. Chee & M. S. Sarjadi, 2018. "Influence of Conductive and Semi-Conductive Nanoparticles on the Dielectric Response of Natural Ester-Based Nanofluid Insulation," Energies, MDPI, vol. 11(2), pages 1-12, February.
    14. Przemyslaw Goscinski & Zbigniew Nadolny & Andrzej Tomczewski & Ryszard Nawrowski & Tomasz Boczar, 2023. "The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    15. Samson Okikiola Oparanti & Ungarala Mohan Rao & Issouf Fofana, 2022. "Natural Esters for Green Transformers: Challenges and Keys for Improved Serviceability," Energies, MDPI, vol. 16(1), pages 1-23, December.
    16. Abdulilah Mohammad Mayet & Seyed Mehdi Alizadeh & Karina Shamilyevna Nurgalieva & Robert Hanus & Ehsan Nazemi & Igor M. Narozhnyy, 2022. "Extraction of Time-Domain Characteristics and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitoring Systems," Energies, MDPI, vol. 15(6), pages 1-19, March.
    17. Li, Xiang & Wu, Junsong & Zhu, Xinyu & Liang, Huixing, 2022. "Agricultural waste-to-energy concerning a biofuel-fed molten carbonate fuel cell toward a novel trigeneration scheme; exergoeconomic/sustainability study and multi-objective optimization," Renewable Energy, Elsevier, vol. 199(C), pages 1189-1209.
    18. Abi Munajad & Cahyo Subroto & Suwarno, 2017. "Study on the Effects of Thermal Aging on Insulating Paper for High Voltage Transformer Composite with Natural Ester from Palm Oil Using Fourier Transform Infrared Spectroscopy (FTIR) and Energy Disper," Energies, MDPI, vol. 10(11), pages 1-15, November.
    19. Marek Florkowski & Maciej Kuniewski & Paweł Zydroń, 2022. "Measurements and Analysis of Partial Discharges at HVDC Voltage with AC Components," Energies, MDPI, vol. 15(7), pages 1-11, March.
    20. Maciej Zdanowski, 2020. "Electrostatic Charging Tendency Analysis Concerning Retrofilling Power Transformers with Envirotemp FR3 Natural Ester," Energies, MDPI, vol. 13(17), pages 1-11, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4195-:d:1151052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.