IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2510-d782422.html
   My bibliography  Save this article

Measurements and Analysis of Partial Discharges at HVDC Voltage with AC Components

Author

Listed:
  • Marek Florkowski

    (Department of Electrical and Power Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Maciej Kuniewski

    (Department of Electrical and Power Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Paweł Zydroń

    (Department of Electrical and Power Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

This paper presents the methodology for phase-resolved partial discharge measurements in HVDC systems with a DC voltage containing trace AC harmonics or a DC voltage ripple. The measurement result of partial discharges is an indicator of the current condition of the high-voltage power devices’ insulation system. The voltage waveforms in HVDC systems are not ideal DC, because different disturbances occurring naturally in these systems can affect the DC voltage. The AC harmonics related to the AC source voltage, and the voltage ripples provided by the power converter topology, can be found in the HVDC voltage. This paper proposes a novel approach to partial discharge measurement in DC networks. The synchronization to the particular AC harmonics appearing in DC voltage was applied to the PD measurements. The analyses were performed on the model sample containing a void inclusion, which was placed between electrodes fed by the DC voltages with the imposed chosen AC harmonics. Two scenarios were analyzed at a constant DC level: one with a variable AC magnitude and the second with a variable frequency of an AC source adjusted to the harmonics: 50, 150, 300, and 350 Hz. It was observed that the superimposed AC voltage component resulted in an intensification of PDs.

Suggested Citation

  • Marek Florkowski & Maciej Kuniewski & Paweł Zydroń, 2022. "Measurements and Analysis of Partial Discharges at HVDC Voltage with AC Components," Energies, MDPI, vol. 15(7), pages 1-11, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2510-:d:782422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marek Florkowski, 2018. "Observations of Partial Discharge Echo in Dielectric Void by Applying a Voltage Chopped Sequence," Energies, MDPI, vol. 11(10), pages 1-15, September.
    2. Espen Doedens & E. Markus Jarvid & Raphaël Guffond & Yuriy V. Serdyuk, 2020. "Space Charge Accumulation at Material Interfaces in HVDC Cable Insulation Part I—Experimental Study and Charge Injection Hypothesis," Energies, MDPI, vol. 13(8), pages 1-16, April.
    3. Mehrtash Azizian Fard & Mohamed Emad Farrag & Alistair Reid & Faris Al-Naemi, 2019. "Electrical Treeing in Power Cable Insulation under Harmonics Superimposed on Unfiltered HVDC Voltages," Energies, MDPI, vol. 12(16), pages 1-15, August.
    4. Hao Tang & Guangning Wu & Ming Chen & Jiang Deng & Xining Li, 2019. "Analysis and Disposal of Typical Breakdown Failure for Resin Impregnated Paper Bushing in the Valve Side of HVDC Converter Transformer," Energies, MDPI, vol. 12(22), pages 1-13, November.
    5. Espen Doedens & E. Markus Jarvid & Raphaël Guffond & Yuriy V. Serdyuk, 2020. "Space Charge Accumulation at Material Interfaces in HVDC Cable Insulation Part II—Simulations of Charge Transport," Energies, MDPI, vol. 13(7), pages 1-24, April.
    6. Antonino Imburgia & Giuseppe Rizzo & Pietro Romano & Guido Ala & Roberto Candela, 2022. "Time Evolution of Partial Discharges in a Dielectric Subjected to the DC Periodic Voltage," Energies, MDPI, vol. 15(6), pages 1-14, March.
    7. Abderrahmane Beroual & Usama Khaled & Phanuel Seraphine Mbolo Noah & Henry Sitorus, 2017. "Comparative Study of Breakdown Voltage of Mineral, Synthetic and Natural Oils and Based Mineral Oil Mixtures under AC and DC Voltages," Energies, MDPI, vol. 10(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartlomiej Pasternak & Pawel Rozga, 2023. "Influence of Dielectric Liquid Type on Partial-Discharge Inception Voltage in Oil-Wedge-Type Insulating System under AC Stress," Energies, MDPI, vol. 16(2), pages 1-11, January.
    2. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    3. Jacek Paś, 2023. "Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas," Energies, MDPI, vol. 16(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuqiang Tian & Shuting Zhang & Chunyi Hou, 2021. "Effects of Trapping Characteristics on Space Charge and Electric Field Distributions in HVDC Cable under Electrothermal Stress," Energies, MDPI, vol. 14(5), pages 1-22, February.
    2. Piotr Przybylek, 2023. "Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy," Energies, MDPI, vol. 16(17), pages 1-12, September.
    3. Zhongliu Zhou & Yuanxiang Zhou & Xin Huang & Yunxiao Zhang & Mingyuan Wang & Shaowei Guo, 2018. "Feature Extraction and Comprehension of Partial Discharge Characteristics in Transformer Oil from Rated AC Frequency to Very Low Frequency," Energies, MDPI, vol. 11(7), pages 1-17, July.
    4. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    5. Ming Chen & Xuandong Liu & Chengjun Liang & Yi Zhao & Hao Tang, 2019. "Study on Surface Charge Accumulation Characteristics of Resin Impregnated Paper Wall Bushing Core Under Positive DC Voltage," Energies, MDPI, vol. 12(23), pages 1-14, November.
    6. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    7. Bartlomiej Pasternak & Pawel Rozga, 2023. "Influence of Dielectric Liquid Type on Partial-Discharge Inception Voltage in Oil-Wedge-Type Insulating System under AC Stress," Energies, MDPI, vol. 16(2), pages 1-11, January.
    8. Grzegorz Dombek & Jarosław Gielniak, 2023. "Dielectric Properties and Fire Safety of Mineral Oil and Low-Viscosity Natural Ester Mixtures in Various Concentrations," Energies, MDPI, vol. 16(10), pages 1-14, May.
    9. M. Z. H. Makmud & H. A. Illias & C. Y. Chee & M. S. Sarjadi, 2018. "Influence of Conductive and Semi-Conductive Nanoparticles on the Dielectric Response of Natural Ester-Based Nanofluid Insulation," Energies, MDPI, vol. 11(2), pages 1-12, February.
    10. Przemyslaw Goscinski & Zbigniew Nadolny & Andrzej Tomczewski & Ryszard Nawrowski & Tomasz Boczar, 2023. "The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    11. Pasquale Cambareri & Carlo de Falco & Luca Di Rienzo & Paolo Seri & Gian Carlo Montanari, 2021. "Simulation and Modelling of Transient Electric Fields in HVDC Insulation Systems Based on Polarization Current Measurements," Energies, MDPI, vol. 14(24), pages 1-12, December.
    12. Abi Munajad & Cahyo Subroto & Suwarno, 2017. "Study on the Effects of Thermal Aging on Insulating Paper for High Voltage Transformer Composite with Natural Ester from Palm Oil Using Fourier Transform Infrared Spectroscopy (FTIR) and Energy Disper," Energies, MDPI, vol. 10(11), pages 1-15, November.
    13. Chengjie Zhang & Yuan Li & Senhong Yang & Ranran Li, 2023. "Study on Development Characteristics of Partial Discharge in Oil-Pressboard Insulation under Constant DC Voltage," Energies, MDPI, vol. 16(10), pages 1-14, May.
    14. Marek Florkowski, 2020. "Influence of Insulating Material Properties on Partial Discharges at DC Voltage," Energies, MDPI, vol. 13(17), pages 1-17, August.
    15. Maciej Zdanowski, 2020. "Electrostatic Charging Tendency Analysis Concerning Retrofilling Power Transformers with Envirotemp FR3 Natural Ester," Energies, MDPI, vol. 13(17), pages 1-11, August.
    16. Mehmet Murat Ispirli & Özcan Kalenderli & Florian Seifert & Michael Rock & Bülent Oral, 2022. "The Effect of DC Voltage Pre-Stress on the Breakdown Voltage of Air under Composite DC and LI Voltage and Test Circuit: Design and Application," Energies, MDPI, vol. 15(4), pages 1-23, February.
    17. Maciej Zdanowski, 2020. "Streaming Electrification of Nycodiel 1255 Synthetic Ester and Trafo EN Mineral Oil Mixtures by Using Rotating Disc Method," Energies, MDPI, vol. 13(23), pages 1-14, November.
    18. Hidir Duzkaya & Abderrahmane Beroual, 2020. "Statistical Analysis of AC Dielectric Strength of Natural Ester-Based ZnO Nanofluids," Energies, MDPI, vol. 14(1), pages 1-11, December.
    19. Pawel Rozga & Marcin Stanek & Bartlomiej Pasternak, 2018. "Characteristics of Negative Streamer Development in Ester Liquids and Mineral Oil in a Point-To-Sphere Electrode System with a Pressboard Barrier," Energies, MDPI, vol. 11(5), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2510-:d:782422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.