IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4420-d404658.html
   My bibliography  Save this article

Electrostatic Charging Tendency Analysis Concerning Retrofilling Power Transformers with Envirotemp FR3 Natural Ester

Author

Listed:
  • Maciej Zdanowski

    (Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland)

Abstract

Natural and synthetic esters are liquids characterized by insulating properties, high flash point, and biodegradability. For this reason, they are more and more often used as an alternative to conventional mineral oils. Esters are used to fill new or operating transformers previously filled with mineral oil (retrofilling). It is technically unfeasible to completely remove mineral oil from a transformer. Its small residues create with esters a mixture with features significantly different from those of the base liquids. This article presents electrostatic charging tendency (ECT) tests for mixtures of fresh and aged Trafo EN mineral oil with Envirotemp FR3 natural ester from the retrofilling point of view. Under unfavorable conditions, the flow electrification phenomenon can damage the solid insulation in transformers with forced oil circulation. The ECT of the insulating liquids has been specified using the volume density of the q w charge. This parameter has been determined using the Abedian–Sonin model on the basis of the electrification current measured in the flow system, as well as selected physicochemical properties of the liquids. It was shown that ECT is strongly dependent on the type of insulating liquid and pipe material, as well as the composition of the mixtures. The most important finding from the research is that a small amount (up to 10%) of fresh and aged mineral oil is effective in reducing the ECT of Envirotemp FR3 natural ester.

Suggested Citation

  • Maciej Zdanowski, 2020. "Electrostatic Charging Tendency Analysis Concerning Retrofilling Power Transformers with Envirotemp FR3 Natural Ester," Energies, MDPI, vol. 13(17), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4420-:d:404658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4420/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4420/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janvier Sylvestre N’cho & Issouf Fofana & Yazid Hadjadj & Abderrahmane Beroual, 2016. "Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(5), pages 1-29, May.
    2. Xiaobo Wang & Chao Tang & Bo Huang & Jian Hao & George Chen, 2018. "Review of Research Progress on the Electrical Properties and Modification of Mineral Insulating Oils Used in Power Transformers," Energies, MDPI, vol. 11(3), pages 1-31, February.
    3. Abderrahmane Beroual & Usama Khaled & Phanuel Seraphine Mbolo Noah & Henry Sitorus, 2017. "Comparative Study of Breakdown Voltage of Mineral, Synthetic and Natural Oils and Based Mineral Oil Mixtures under AC and DC Voltages," Energies, MDPI, vol. 10(4), pages 1-17, April.
    4. Maciej Zdanowski, 2020. "Streaming Electrification Phenomenon of Electrical Insulating Oils for Power Transformers," Energies, MDPI, vol. 13(12), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Zdanowski, 2020. "Streaming Electrification of Nycodiel 1255 Synthetic Ester and Trafo EN Mineral Oil Mixtures by Using Rotating Disc Method," Energies, MDPI, vol. 13(23), pages 1-14, November.
    2. Grzegorz Dombek & Jarosław Gielniak, 2023. "Dielectric Properties and Fire Safety of Mineral Oil and Low-Viscosity Natural Ester Mixtures in Various Concentrations," Energies, MDPI, vol. 16(10), pages 1-14, May.
    3. Pawel Rozga & Abderahhmane Beroual, 2021. "High Voltage Insulating Materials—Current State and Prospects," Energies, MDPI, vol. 14(13), pages 1-4, June.
    4. Dariusz Zmarzły & Paweł Frącz, 2021. "Measurement of Dielectric Liquid Electrification in the Shuttle System with Two Parallel Electrodes," Energies, MDPI, vol. 14(4), pages 1-16, February.
    5. Maciej Zdanowski, 2022. "Streaming Electrification of C 60 Fullerene Doped Insulating Liquids for Power Transformers Applications," Energies, MDPI, vol. 15(7), pages 1-14, March.
    6. Arputhasamy Joseph Amalanathan & Maciej Zdanowski & Ramanujam Sarathi, 2022. "Streaming Electrification of Different Insulating Fluids in Power Transformers," Energies, MDPI, vol. 15(21), pages 1-20, October.
    7. Huaqiang Li & Linfeng Xia & Shengwei Cai & Zhiqiang Huang & Jiaqi Li & Lisheng Zhong, 2021. "Influence of Molecule Structure on Lightning Impulse Breakdown of Ester Liquids," Energies, MDPI, vol. 14(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Zdanowski, 2020. "Streaming Electrification of Nycodiel 1255 Synthetic Ester and Trafo EN Mineral Oil Mixtures by Using Rotating Disc Method," Energies, MDPI, vol. 13(23), pages 1-14, November.
    2. Maciej Zdanowski, 2022. "Streaming Electrification of C 60 Fullerene Doped Insulating Liquids for Power Transformers Applications," Energies, MDPI, vol. 15(7), pages 1-14, March.
    3. Przemyslaw Goscinski & Zbigniew Nadolny & Andrzej Tomczewski & Ryszard Nawrowski & Tomasz Boczar, 2023. "The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    4. Piotr Przybylek, 2018. "A New Concept of Applying Methanol to Dry Cellulose Insulation at the Stage of Manufacturing a Transformer," Energies, MDPI, vol. 11(7), pages 1-13, June.
    5. Abi Munajad & Cahyo Subroto & Suwarno, 2017. "Study on the Effects of Thermal Aging on Insulating Paper for High Voltage Transformer Composite with Natural Ester from Palm Oil Using Fourier Transform Infrared Spectroscopy (FTIR) and Energy Disper," Energies, MDPI, vol. 10(11), pages 1-15, November.
    6. Leila Safiddine & Hadj-Ziane Zafour & Ungarala Mohan Rao & Issouf Fofana, 2019. "Regeneration of Transformer Insulating Fluids Using Membrane Separation Technology," Energies, MDPI, vol. 12(3), pages 1-13, January.
    7. Kakou D. Kouassi & Issouf Fofana & Ladji Cissé & Yazid Hadjadj & Kouba M. Lucia Yapi & K. Ambroise Diby, 2018. "Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation," Energies, MDPI, vol. 11(6), pages 1-13, June.
    8. Piotr Przybylek & Hubert Moranda & Hanna Moscicka-Grzesiak & Dominika Szczesniak, 2019. "Application of Synthetic Ester for Drying Distribution Transformer Insulation—The Influence of Cellulose Thickness on Drying Efficiency," Energies, MDPI, vol. 12(20), pages 1-16, October.
    9. Jiangjun Ruan & Shuo Jin & Zhiye Du & Yiming Xie & Lin Zhu & Yu Tian & Ruohan Gong & Guannan Li & Min Xiong, 2017. "Condition Assessment of Paper Insulation in Oil-Immersed Power Transformers Based on the Iterative Inversion of Resistivity," Energies, MDPI, vol. 10(4), pages 1-15, April.
    10. Hanbo Zheng & Jiefeng Liu & Yiyi Zhang & Yijie Ma & Yang Shen & Xiaochen Zhen & Zilai Chen, 2018. "Effectiveness Analysis and Temperature Effect Mechanism on Chemical and Electrical-Based Transformer Insulation Diagnostic Parameters Obtained from PDC Data," Energies, MDPI, vol. 11(1), pages 1-17, January.
    11. Piotr Przybylek, 2023. "Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy," Energies, MDPI, vol. 16(17), pages 1-12, September.
    12. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    13. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    14. Janvier Sylvestre N’cho & Issouf Fofana, 2020. "Review of Fiber Optic Diagnostic Techniques for Power Transformers," Energies, MDPI, vol. 13(7), pages 1-24, April.
    15. Issouf Fofana & U. Mohan Rao, 2018. "Engineering Dielectric Liquid Applications," Energies, MDPI, vol. 11(10), pages 1-4, October.
    16. Zhongliu Zhou & Yuanxiang Zhou & Xin Huang & Yunxiao Zhang & Mingyuan Wang & Shaowei Guo, 2018. "Feature Extraction and Comprehension of Partial Discharge Characteristics in Transformer Oil from Rated AC Frequency to Very Low Frequency," Energies, MDPI, vol. 11(7), pages 1-17, July.
    17. Teresa Nogueira & José Carvalho & José Magano, 2022. "Eco-Friendly Ester Fluid for Power Transformers versus Mineral Oil: Design Considerations," Energies, MDPI, vol. 15(15), pages 1-18, July.
    18. Arputhasamy Joseph Amalanathan & Ramanujam Sarathi & Maciej Zdanowski & Ravikrishnan Vinu & Zbigniew Nadolny, 2023. "Review on Gassing Tendency of Different Insulating Fluids towards Transformer Applications," Energies, MDPI, vol. 16(1), pages 1-15, January.
    19. Siti Rosilah Arsad & Pin Jern Ker & Md. Zaini Jamaludin & Pooi Ying Choong & Hui Jing Lee & Vimal Angela Thiviyanathan & Young Zaidey Yang Ghazali, 2023. "Water Content in Transformer Insulation System: A Review on the Detection and Quantification Methods," Energies, MDPI, vol. 16(4), pages 1-31, February.
    20. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4420-:d:404658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.