IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8121-d959364.html
   My bibliography  Save this article

Streaming Electrification of Different Insulating Fluids in Power Transformers

Author

Listed:
  • Arputhasamy Joseph Amalanathan

    (Department of High Voltage Engineering, Faculty of Electrical Engineering and Informatics, University of Applied Sciences, 02763 Zittau, Germany)

  • Maciej Zdanowski

    (Department of Electric Power Engineering and Renewable Energy, Faculty of Electrical Engineering, Automatic Control and Computer Science, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland)

  • Ramanujam Sarathi

    (Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India)

Abstract

This paper presents a detailed review of the streaming electrification phenomena of different insulating fluids for power transformers. The comparison of different techniques used to assess the charging tendency of fluids is discussed depending on the flow type (planar or centrifugal), volume of oil, and interface material. The charge separation between the insulating fluid and metallic/pressboard interfaces is explained in terms of the electrical double layer formation involving a fixed layer and diffuse layer. Based on the experimental results, the streaming electrification is observed to be a function of various factors such as speed, temperature, electric field, and surface roughness. Depending on the molecular structure of insulating liquids that come into contact with solid insulation at the interface, the streaming current can increase; hence, a suitable additive (benzotriazole, fullerene, Irgamet 39) is selected based on the type of fluid and charge polarity. The degradation of the insulating liquid upon ageing, which increases the streaming current and reclamation of such aged fluids using adsorbents (Fuller’s earth, activated carbon, bentonite, and alumina), is a possible method to suppress the static current through improving its dielectric properties. The nanofluids show a higher streaming current compared to base fluid with no change observed even after the reclamation process. The energization process using alternating current (AC) and direct current (DC) impacts the streaming phenomenon depending on its magnitude and polarity. The diffusion of sulfur compounds in the insulating liquid is another major hazard to transformers because the sulfide ions affect the physio-chemical reaction at the interface material, which is responsible for the formation of streaming current.

Suggested Citation

  • Arputhasamy Joseph Amalanathan & Maciej Zdanowski & Ramanujam Sarathi, 2022. "Streaming Electrification of Different Insulating Fluids in Power Transformers," Energies, MDPI, vol. 15(21), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8121-:d:959364
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raymon Antony Raj & Ravi Samikannu & Abid Yahya & Modisa Mosalaosi, 2021. "Investigation of Survival/Hazard Rate of Natural Ester Treated with Al 2 O 3 Nanoparticle for Power Transformer Liquid Dielectric," Energies, MDPI, vol. 14(5), pages 1-25, March.
    2. Maciej Zdanowski, 2020. "Electrostatic Charging Tendency Analysis Concerning Retrofilling Power Transformers with Envirotemp FR3 Natural Ester," Energies, MDPI, vol. 13(17), pages 1-11, August.
    3. Maciej Zdanowski, 2020. "Streaming Electrification of Nycodiel 1255 Synthetic Ester and Trafo EN Mineral Oil Mixtures by Using Rotating Disc Method," Energies, MDPI, vol. 13(23), pages 1-14, November.
    4. Qiang Liu & Ramamoorthi Venkatasubramanian & Shanika Matharage & Zhongdong Wang, 2019. "Effect of Oil Regeneration on Improving Paper Conditions in a Distribution Transformer," Energies, MDPI, vol. 12(9), pages 1-13, May.
    5. Maciej Zdanowski, 2022. "Streaming Electrification of C 60 Fullerene Doped Insulating Liquids for Power Transformers Applications," Energies, MDPI, vol. 15(7), pages 1-14, March.
    6. Janvier Sylvestre N’cho & Issouf Fofana & Yazid Hadjadj & Abderrahmane Beroual, 2016. "Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(5), pages 1-29, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arputhasamy Joseph Amalanathan & Ramanujam Sarathi & Maciej Zdanowski, 2023. "A Critical Overview of the Impact of Nanoparticles in Ester Fluid for Power Transformers," Energies, MDPI, vol. 16(9), pages 1-24, April.
    2. Zbigniew Nadolny, 2023. "Design and Optimization of Power Transformer Diagnostics," Energies, MDPI, vol. 16(18), pages 1-7, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Zdanowski, 2022. "Streaming Electrification of C 60 Fullerene Doped Insulating Liquids for Power Transformers Applications," Energies, MDPI, vol. 15(7), pages 1-14, March.
    2. Pawel Rozga & Abderahhmane Beroual, 2021. "High Voltage Insulating Materials—Current State and Prospects," Energies, MDPI, vol. 14(13), pages 1-4, June.
    3. Grzegorz Dombek & Jarosław Gielniak, 2023. "Dielectric Properties and Fire Safety of Mineral Oil and Low-Viscosity Natural Ester Mixtures in Various Concentrations," Energies, MDPI, vol. 16(10), pages 1-14, May.
    4. Dariusz Zmarzły & Paweł Frącz, 2021. "Measurement of Dielectric Liquid Electrification in the Shuttle System with Two Parallel Electrodes," Energies, MDPI, vol. 14(4), pages 1-16, February.
    5. Maciej Zdanowski, 2020. "Streaming Electrification of Nycodiel 1255 Synthetic Ester and Trafo EN Mineral Oil Mixtures by Using Rotating Disc Method," Energies, MDPI, vol. 13(23), pages 1-14, November.
    6. Piotr Przybylek & Hubert Moranda & Hanna Moscicka-Grzesiak & Dominika Szczesniak, 2019. "Application of Synthetic Ester for Drying Distribution Transformer Insulation—The Influence of Cellulose Thickness on Drying Efficiency," Energies, MDPI, vol. 12(20), pages 1-16, October.
    7. Arputhasamy Joseph Amalanathan & Ramanujam Sarathi & Maciej Zdanowski, 2023. "A Critical Overview of the Impact of Nanoparticles in Ester Fluid for Power Transformers," Energies, MDPI, vol. 16(9), pages 1-24, April.
    8. Jiangjun Ruan & Shuo Jin & Zhiye Du & Yiming Xie & Lin Zhu & Yu Tian & Ruohan Gong & Guannan Li & Min Xiong, 2017. "Condition Assessment of Paper Insulation in Oil-Immersed Power Transformers Based on the Iterative Inversion of Resistivity," Energies, MDPI, vol. 10(4), pages 1-15, April.
    9. Hanbo Zheng & Jiefeng Liu & Yiyi Zhang & Yijie Ma & Yang Shen & Xiaochen Zhen & Zilai Chen, 2018. "Effectiveness Analysis and Temperature Effect Mechanism on Chemical and Electrical-Based Transformer Insulation Diagnostic Parameters Obtained from PDC Data," Energies, MDPI, vol. 11(1), pages 1-17, January.
    10. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    11. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    12. Janvier Sylvestre N’cho & Issouf Fofana, 2020. "Review of Fiber Optic Diagnostic Techniques for Power Transformers," Energies, MDPI, vol. 13(7), pages 1-24, April.
    13. Arputhasamy Joseph Amalanathan & Ramanujam Sarathi & Maciej Zdanowski & Ravikrishnan Vinu & Zbigniew Nadolny, 2023. "Review on Gassing Tendency of Different Insulating Fluids towards Transformer Applications," Energies, MDPI, vol. 16(1), pages 1-15, January.
    14. Siti Rosilah Arsad & Pin Jern Ker & Md. Zaini Jamaludin & Pooi Ying Choong & Hui Jing Lee & Vimal Angela Thiviyanathan & Young Zaidey Yang Ghazali, 2023. "Water Content in Transformer Insulation System: A Review on the Detection and Quantification Methods," Energies, MDPI, vol. 16(4), pages 1-31, February.
    15. Andrew Adewunmi Adekunle & Samson Okikiola Oparanti & Issouf Fofana, 2023. "Performance Assessment of Cellulose Paper Impregnated in Nanofluid for Power Transformer Insulation Application: A Review," Energies, MDPI, vol. 16(4), pages 1-32, February.
    16. Jiake Fang & Hanbo Zheng & Jiefeng Liu & Junhui Zhao & Yiyi Zhang & Ke Wang, 2018. "A Transformer Fault Diagnosis Model Using an Optimal Hybrid Dissolved Gas Analysis Features Subset with Improved Social Group Optimization-Support Vector Machine Classifier," Energies, MDPI, vol. 11(8), pages 1-18, July.
    17. Mohammed El Amine Senoussaoui & Mostefa Brahami & Issouf Fofana, 2021. "Transformer Oil Quality Assessment Using Random Forest with Feature Engineering," Energies, MDPI, vol. 14(7), pages 1-15, March.
    18. Chenmeng Zhang & Kailin Zhao & Shijun Xie & Can Hu & Yu Zhang & Nanxi Jiang, 2021. "Research on the Time-Domain Dielectric Response of Multiple Impulse Voltage Aging Oil-Film Dielectrics," Energies, MDPI, vol. 14(7), pages 1-15, April.
    19. Konrad Kierczynski & Przemyslaw Rogalski & Vitalii Bondariev & Pawel Okal & Daniel Korenciak, 2022. "Research on the Influence of Moisture Exchange between Oil and Cellulose on the Electrical Parameters of the Insulating Oil in Power Transformers," Energies, MDPI, vol. 15(20), pages 1-15, October.
    20. Przemyslaw Goscinski & Zbigniew Nadolny & Andrzej Tomczewski & Ryszard Nawrowski & Tomasz Boczar, 2023. "The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8121-:d:959364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.