Wind turbine wake models developed at the technical university of Denmark: A review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2016.01.113
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Peña, Alfredo & Réthoré, Pierre-Elouan & Rathmann, Ole, 2014. "Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model," Renewable Energy, Elsevier, vol. 70(C), pages 164-171.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ohba, Masamichi & Kadokura, Shinji & Nohara, Daisuke, 2016. "Impacts of synoptic circulation patterns on wind power ramp events in East Japan," Renewable Energy, Elsevier, vol. 96(PA), pages 591-602.
- Pérez Albornoz, C. & Escalante Soberanis, M.A. & Ramírez Rivera, V. & Rivero, M., 2022. "Review of atmospheric stability estimations for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Kevin Ray Español Lucas & Tomonori Sato & Masamichi Ohba, 2021. "Hourly Variation of Wind Speeds in the Philippines and Its Potential Impact on the Stability of the Power System," Energies, MDPI, vol. 14(8), pages 1-14, April.
- Han, Xingxing & Liu, Deyou & Xu, Chang & Shen, Wen Zhong, 2018. "Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain," Renewable Energy, Elsevier, vol. 126(C), pages 640-651.
- Cranmer, Alexana & Baker, Erin & Liesiö, Juuso & Salo, Ahti, 2018. "A portfolio model for siting offshore wind farms with economic and environmental objectives," European Journal of Operational Research, Elsevier, vol. 267(1), pages 304-314.
- Masoudi, Seiied Mohsen & Baneshi, Mehdi, 2022. "Layout optimization of a wind farm considering grids of various resolutions, wake effect, and realistic wind speed and wind direction data: A techno-economic assessment," Energy, Elsevier, vol. 244(PB).
- Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Towards the optimal design of a co-located wind-wave farm," Energy, Elsevier, vol. 84(C), pages 15-24.
More about this item
Keywords
Wind turbine; Wake modelling; Wake models benchmark;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:752-769. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.